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1
PLUGGABLE ALLOCATION IN A CLOUD
COMPUTING SYSTEM

The present application claims benefit of the following
U.S. non-provisional patent applications as a continuation-
in-part: Ser. No. 13/422,135, filed Mar. 16, 2012, entitled
“Method and System for Utilizing Spare Cloud Resources;”
Ser. No. 13/089,442 filed Apr. 19, 2011, entitled “Massively
Scalable Object Storage System, which claims priority to
U.S. provisional patent application 61/450,166, filed Mar. 8,
2011, entitled “Massively Scalable File Storage System;”
Ser. No. 13/270,737 filed Oct. 11, 2011, entitled “Method and
System for Transferring a Virtual Machine, which claims
priority to U.S. provisional patent application 61/480,784
filed Apr. 29, 2011, entitled “Hypervisor Agnostic Method to
Persist and Backup Virtual Machine Configurations, U.S.
provisional patent application 61/479,294 filed Apr. 26,2011,
entitled “Massively Scalable Server System, and U.S. provi-
sional patent application 61/450,166 filed Mar. 8, 2011,
entitled “Massively Scalable File Storage System;” and Ser.
No. 13/367,481 filed Feb. 7, 2012, entitled “Elastic, Mas-
sively Parallel Processing Data Warehouse.” The entirety of
these disclosures is hereby incorporated by reference.

BACKGROUND

The present disclosure relates generally to cloud comput-
ing, and more particularly to a customizable multi-vendor,
multi-tenant cloud computing system.

Cloud computing services can provide computational
capacity, data access, networking/routing and storage ser-
vices via a large pool of shared resources operated by a cloud
computing provider. Because the computing resources are
delivered over a network, cloud computing is location-inde-
pendent computing, with all resources being provided to end-
users on demand with control of the physical resources sepa-
rated from control of the computing resources.

Originally the term cloud came from a diagram that con-
tained a cloud-like shape to contain the services that afforded
computing power that was harnessed to get work done. Much
like the electrical power we receive each day, cloud comput-
ing is a model for enabling access to a shared collection of
computing resources—networks for transfer, servers for stor-
age, and applications or services for completing work. More
specifically, the term “cloud computing” describes a con-
sumption and delivery model for IT services based on the
Internet, and it typically involves over-the-Internet provision-
ing of dynamically scalable and often virtualized resources.
This frequently takes the form of web-based tools or appli-
cations that users can access and use through a web browser
as if it was a program installed locally on their own computer.
Details are abstracted from consumers, who no longer have
need for expertise in, or control over, the technology infra-
structure “in the cloud” that supports them. Most cloud com-
puting infrastructures consist of services delivered through
common centers and built on servers. Clouds often appear as
single points of access for consumers’ computing needs, and
do not require end-user knowledge of the physical location
and configuration of the system that delivers the services.

The utility model of cloud computing is useful because
many of the computers in place in data centers today are
underutilized in computing power and networking band-
width. People may briefly need a large amount of computing
capacity to complete a computation for example, but may not
need the computing power once the computation is done. The
cloud computing utility model provides computing resources
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on an on-demand basis with the flexibility to bring it up or
down through automation or with little intervention.

As a result of the utility model of cloud computing, there
are a number of aspects of cloud-based systems that can
present challenges to existing application infrastructure.
First, clouds should enable self-service, so that users can
provision servers and networks with little human interven-
tion. Second, network access; because computational
resources are delivered over the network, the individual ser-
vice endpoints need to be network-addressable over standard
protocols and through standardized mechanisms. Third,
multi-tenancy. Clouds are designed to serve multiple con-
sumers according to demand, and it is important that
resources be shared fairly and that individual users not suffer
performance degradation. Fourth, elasticity. Clouds are
designed for rapid creation and destruction of computing
resources, typically based upon virtual containers. Provision-
ing these different types of resources must be rapid and scale
up or down based on need. Further, the cloud itself as well as
applications that use cloud computing resources must be pre-
pared for impermanent, fungible resources; application or
cloud state must be explicitly managed because there is no
guaranteed permanence of the infrastructure. Fifth, clouds
typically provide metered or measured service—like utilities
that are paid for by the hour, clouds should optimize resource
use and control it for the level of service or type of servers
such as storage or processing.

Cloud computing offers different service models depend-
ing on the capabilities a consumer may require, including
SaaS, PaaS, and laaS-style clouds. SaaS (Software as a Ser-
vice) clouds provide the users the ability to use software over
the network and on a distributed basis. SaaS clouds typically
do not expose any ofthe underlying cloud infrastructure to the
user. PaaS (Platform as a Service) clouds provide users the
ability to deploy applications through a programming lan-
guage or tools supported by the cloud platform provider.
Users interact with the cloud through standardized APIs, but
the actual cloud mechanisms are abstracted away. Finally,
TaaS (Infrastructure as a Service) clouds provide computer
resources that mimic physical resources, such as computer
instances, network connections, and storage devices. The
actual scaling of the instances may be hidden from the devel-
oper, but users are required to control the scaling infrastruc-
ture.

One way in which different cloud computing systems may
differ from each other is in how they deal with control of the
underlying hardware and privacy of data. The different
approaches are sometimes referred to a “public clouds,” “pri-
vate clouds,” “hybrid clouds,” and “multi-vendor clouds.” A
public cloud has an infrastructure that is available to the
general public or alarge industry group and is likely owned by
a cloud services company. A private cloud operates for a
single organization, but can be managed on-premise or off-
premise. A hybrid cloud can be a deployment model, as a
composition of both public and private clouds, or a hybrid
model for cloud computing may involve both virtual and
physical servers. A multi-vendor cloud is a hybrid cloud that
may involve multiple public clouds, multiple private clouds,
or some mixture.

Because the flow of services provided by the cloud is not
directly under the control of the cloud computing provider,
cloud computing requires the rapid and dynamic creation and
destruction of computational units, frequently realized as vir-
tualized resources. Maintaining the reliable flow and delivery
of' dynamically changing computational resources ontop of a
pool of limited and less-reliable physical servers provides
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unique challenges. Accordingly, it is desirable to provide a
better-functioning cloud computing system with superior
operational capabilities.

There are existing cloud computing systems being offered
in the market, but the underlying workings of these systems
are opaque and not modifiable by the end-user or by areseller
of cloud services. Each one of these systems has a number of
underlying operational parameters that are fixed and consid-
ered “optimal” by the cloud computing provider relative to
the underlying constraints of their existing system and their
existing client load. To the extent that these operational
parameters are changed over time, the changes are meant to
optimize the running ofthe system within a single operational
context—that of the cloud service provider.

It is well-known, however, that workloads vary between
individuals, between customers, and over time, and that a
“general purpose” architecture is frequently worse than a
special-purpose architecture where the operational param-
eters have been chosen to emphasize performance in one
particular area. A closed cloud system is of necessity general
purpose, or at minimum more general-purpose than a system
modified for a single customer workload. It is possible,
though, to use an open and pluggable system to allow end-
users to modify the internal parameters of the cloud system to
address particularized and special-purpose use cases, and
thus allow for both general-purpose applicability and special-
purpose performance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view illustrating an external view of
a cloud computing system.

FIG. 2 is a schematic view illustrating an information pro-
cessing system as used in various embodiments.

FIG. 3 is a virtual machine management system as used in
various embodiments.

FIG. 4 is an [aaS-style network service according to vari-
ous embodiments.

FIG. 5a is a diagram showing types of network access
available to virtual machines in a cloud computing system
according to various embodiments.

FIG. 5b is a flowchart showing the establishment of a
VLAN for a project according to various embodiments.

FIG. 6a shows a message service system according to
various embodiments.

FIG. 65 is a diagram showing how a directed message is
sent using the message service according to various embodi-
ments.

FIG. 6c is a diagram showing how a broadcast message is
sent using the message service according to various embodi-
ments.

FIG. 7 is a PaaS-style identity and authentication service
according to various embodiments.

FIG. 8 is a PaaS-style object storage service according to
various embodiments.

FIG. 9 is a schematic view illustrating an embodiment of a
logical structure provided by the object storage service
according to various embodiments.

FIG. 10 is a schematic view of a user account storage
structure according to one embodiment.

FIG. 11 is a flow chart illustrating a method for storing an
object according to one embodiment.

FIG. 12 is a flow chart illustrating an embodiment of a
method for creating a ring according to one embodiment.

FIG. 13 is a flow chart illustrating an embodiment of a
method for reassigning partitions in a ring according to one
embodiment.
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FIG. 14 is a PaaS-style image service according to various
embodiments.

FIG. 15 is an laaS-style computational cloud service
according to various embodiments.

FIG. 16 is an instantiating and launching process for virtual
resources according to various embodiments.

FIG. 17 is an exemplary plug-in facility according to vari-
ous embodiments.

DETAILED DESCRIPTION

The following disclosure has reference to computing ser-
vices delivered on top of a cloud architecture.

Referring now to FIG. 1, an external view of one embodi-
ment of a cloud computing system 100 is illustrated. The
object storage service 100 includes a user device 102 con-
nected to a network 104 such as, for example, a Transport
Control Protocol/Internet Protocol (TCP/IP) network (e.g.,
the Internet.) The user device 102 is coupled to the cloud
computing system 110 via one or more service endpoints 112.
Depending on the type of cloud service provided, these end-
points give varying amounts of control relative to the provi-
sioning of resources within the cloud computing system 110.
For example, SaaS endpoint 112a will typically only give
information and access relative to the application running on
the cloud storage system, and the scaling and processing
aspects of the cloud computing system will be obscured from
the user. PaaS endpoint 1125 will typically give an abstract
Application Programming Interface (API) that allows devel-
opers to declaratively request or command the backend stor-
age, computation, and scaling resources provided by the
cloud, without giving exact control to the user. IaaS endpoint
112¢ will typically provide the ability to directly request the
provisioning of resources, such as computation units (typi-
cally virtual machines), software-defined or software-con-
trolled network elements like routers, switches, domain name
servers, etc., file or object storage facilities, authorization
services, database services, queue services and endpoints,
etc. In addition, users interacting with an laaS cloud are
typically able to provide virtual machine images that have
been customized for user-specific functions. This allows the
cloud computing system 110 to be used for new, user-defined
services without requiring specific support.

It is important to recognize that the control allowed via an
IaaS endpoint is not complete. Within the cloud computing
system 110 are one more cloud controllers 120 (running what
is sometimes called a “cloud operating system”) that work on
an even lower level, interacting with physical machines, man-
aging the contradictory demands of the multi-tenant cloud
computing system 110. The workings of the cloud controllers
120 are typically not exposed outside of the cloud computing
system 110, even in an laaS context. In one embodiment, the
commands received through one of the service endpoints 112
are then routed via one or more internal networks 114. The
internal network 114 couples the different services to each
other. The internal network 114 may encompass various pro-
tocols or services, including but not limited to electrical,
optical, or wireless connections at the physical layer; Ether-
net, Fibre channel, ATM, and SONET at the MAC layer; TCP,
UDP, ZeroMQ or other services at the connection layer; and
XMPP, HTTP, AMPQ, STOMP, SMS, SMTP, SNMP, or other
standards at the protocol layer. The internal network 114 is
typically not exposed outside the cloud computing system,
exceptto the extent that one or more virtual networks 116 may
be exposed that control the internal routing according to
various rules. The virtual networks 116 typically do not
expose as much complexity as may exist in the actual internal
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network 114; but varying levels of granularity can be exposed
to the control of the user, particularly in IaaS services.

In one or more embodiments, it may be useful to include
various processing or routing nodes in the network layers 114
and 116, such as proxy/gateway 118. Other types of process-
ing or routing nodes may include switches, routers, switch
fabrics, caches, format modifiers, or correlators. These pro-
cessing and routing nodes may or may not be visible to the
outside. It is typical that one level of processing or routing
nodes may be internal only, coupled to the internal network
114, whereas other types of network services may be defined
by or accessible to users, and show up in one or more virtual
networks 116. Either of the internal network 114 or the virtual
networks 116 may be encrypted or authenticated according to
the protocols and services described below.

In various embodiments, one or more parts of the cloud
computing system 110 may be disposed on a single host.
Accordingly, some of the “network™ layers 114 and 116 may
be composed of an internal call graph, inter-process commu-
nication (IPC), or a shared memory communication system.

Once a communication passes from the endpoints via a
network layer 114 or 116, as well as possibly via one or more
switches or processing devices 118, it is received by one or
more applicable cloud controllers 120. The cloud controllers
120 are responsible for interpreting the message and coordi-
nating the performance of the necessary corresponding ser-
vices, returning a response if necessary. Although the cloud
controllers 120 may provide services directly, more typically
the cloud controllers 120 are in operative contact with the
service resources 130 necessary to provide the corresponding
services. For example, itis possible for different services to be
provided at different levels of abstraction. For example, a
“compute” service 130a may work at an IaaS level, allowing
the creation and control of user-defined virtual computing
resources. In the same cloud computing system 110, a PaaS-
level object storage service 1305 may provide a declarative
storage APIL, and a SaaS-level Queue service 130c, DNS
service 1304, or Database service 130e may provide applica-
tion services without exposing any of the underlying scaling
or computational resources. Other services are contemplated
as discussed in detail below.

In various embodiments, various cloud computing services
or the cloud computing system itself may require a message
passing system. The message routing service 140 is available
to address this need, but it is not a required part of the system
architecture in at least one embodiment. In one embodiment,
the message routing service is used to transfer messages from
one component to another without explicitly linking the state
of'the two components. Note that this message routing service
140 may or may not be available for user-addressable sys-
tems; in one preferred embodiment, there is a separation
between storage for cloud service state and for user data,
including user service state.

In various embodiments, various cloud computing services
or the cloud computing system itself may require a persistent
storage for system state. The data store 150 is available to
address this need, but it is not a required part of the system
architecture in at least one embodiment. In one embodiment,
various aspects of system state are saved in redundant data-
bases on various hosts or as special files in an object storage
service. In a second embodiment, a relational database ser-
vice is used to store system state. In a third embodiment, a
column, graph, or document-oriented database is used. Note
that this persistent storage may or may not be available for
user-addressable systems; in one preferred embodiment,
there is a separation between storage for cloud service state
and for user data, including user service state.

10

15

20

25

30

35

40

45

50

55

60

65

6

In various embodiments, it may be useful for the cloud
computing system 110 to have a system controller 160. In one
embodiment, the system controller 160 is similar to the cloud
computing controllers 120, except that it is used to control or
direct operations at the level of the cloud computing system
110 rather than at the level of an individual service.

For clarity of discussion above, only one user device 102
has been illustrated as connected to the cloud computing
system 110, and the discussion generally referred to receiving
a communication from outside the cloud computing system,
routing it to a cloud controller 120, and coordinating process-
ing of the message via a service 130, the infrastructure
described is also equally available for sending out messages.
These messages may be sent out as replies to previous com-
munications, or they may be internally sourced. Routing mes-
sages from a particular service 130 to a user device 102 is
accomplished in the same manner as receiving a message
from user device 102 to a service 130, just in reverse. The
precise manner of receiving, processing, responding, and
sending messages is described below with reference to the
various discussed service embodiments. One of skill in the art
will recognize, however, that a plurality of user devices 102
may, and typically will, be connected to the cloud computing
system 110 and that each element or set of elements within the
cloud computing system is replicable as necessary. Further,
the cloud computing system 110, whether or not it has one
endpoint or multiple endpoints, is expected to encompass
embodiments including public clouds, private clouds, hybrid
clouds, and multi-vendor clouds.

Each of the user device 102, the cloud computing system
110, the endpoints 112, the network switches and processing
nodes 118, the cloud controllers 120 and the cloud services
130 typically include a respective information processing
system, a subsystem, or a part of a subsystem for executing
processes and performing operations (e.g., processing or
communicating information). An information processing
system is an electronic device capable of processing, execut-
ing or otherwise handling information, such as a computer.
FIG. 2 shows an information processing system 210 that is
representative of one of, or a portion of, the information
processing systems described above.

Referring now to FIG. 2, diagram 200 shows an informa-
tion processing system 210 configured to host one or more
virtual machines, coupled to a network 205. The network 205
could be one or both of the networks 114 and 116 described
above. An information processing system is an electronic
device capable of processing, executing or otherwise han-
dling information. Examples of information processing sys-
tems include a server computer, a personal computer (e.g., a
desktop computer or a portable computer such as, for
example, a laptop computer), a handheld computer, and/or a
variety of other information handling systems known in the
art. The information processing system 210 shown is repre-
sentative of, one of, or a portion of, the information process-
ing systems described above.

The information processing system 210 may include any or
all of the following: (a) a processor 212 for executing and
otherwise processing instructions, (b) one or more network
interfaces 214 (e.g., circuitry) for communicating between
the processor 212 and other devices, those other devices
possibly located across the network 205; (¢) a memory device
216 (e.g., FLASH memory, a random access memory (RAM)
device or a read-only memory (ROM) device for storing
information (e.g., instructions executed by processor 212 and
data operated upon by processor 212 in response to such
instructions)). In some embodiments, the information pro-
cessing system 210 may also include a separate computer-
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readable medium 218 operably coupled to the processor 212
for storing information and instructions as described further
below.

In one embodiment, there is more than one network inter-
face 214, so that the multiple network interfaces can be used
to separately route management, production, and other traffic.
In one exemplary embodiment, an information processing
system has a “management” interface at 1 GB/s, a “produc-
tion” interface at 10 GB/s, and may have additional interfaces
for channel bonding, high availability, or performance. An
information processing device configured as a processing or
routing node may also have an additional interface dedicated
to public Internet traffic, and specific circuitry or resources
necessary to act as a VLAN trunk.

In some embodiments, the information processing system
210 may include a plurality of input/output devices 220a-»
which are operably coupled to the processor 212, for input-
ting or outputting information, such as a display device 220a,
a print device 2205, or other electronic circuitry 220¢-r for
performing other operations of the information processing
system 210 known in the art.

With reference to the computer-readable media, including
both memory device 216 and secondary computer-readable
medium 218, the computer-readable media and the processor
212 are structurally and functionally interrelated with one
another as described below in further detail, and information
processing system of the illustrative embodiment is structur-
ally and functionally interrelated with a respective computer-
readable medium similar to the manner in which the proces-
sor 212 is structurally and functionally interrelated with the
computer-readable media 216 and 218. As discussed above,
the computer-readable media may be implemented using a
hard disk drive, a memory device, and/or a variety of other
computer-readable media known in the art, and when includ-
ing functional descriptive material, data structures are created
that define structural and functional interrelationships
between such data structures and the computer-readable
media (and other aspects of the system 200). Such interrela-
tionships permit the data structures’ functionality to be real-
ized. For example, in one embodiment the processor 212
reads (e.g., accesses or copies) such functional descriptive
material from the network interface 214, the computer-read-
able media 218 onto the memory device 216 of the informa-
tion processing system 210, and the information processing
system 210 (more particularly, the processor 212) performs
its operations, as described elsewhere herein, in response to
such material stored in the memory device of the information
processing system 210. In addition to reading such functional
descriptive material from the computer-readable medium
218, the processor 212 is capable of reading such functional
descriptive material from (or through) the network 105. In
one embodiment, the information processing system 210
includes at least one type of computer-readable media that is
non-transitory. For explanatory purposes below, singular
forms such as “computer-readable medium,” “memory,” and
“disk” are used, but it is intended that these may refer to all or
any portion of the computer-readable media available in or to
a particular information processing system 210, without lim-
iting them to a specific location or implementation.

The information processing system 210 includes a hyper-
visor 230. The hypervisor 230 may be implemented in soft-
ware, as a subsidiary information processing system, or in a
tailored electrical circuit or as software instructions to be used
in conjunction with a processor to create a hardware-software
combination that implements the specific functionality
described herein. To the extent that software is used to imple-
ment the hypervisor, it may include software that is stored on
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a computer-readable medium, including the computer-read-
able medium 218. The hypervisor may be included logically
“below” a host operating system, as a host itself, as part of a
larger host operating system, or as a program Or process
running “above” or “on top of” a host operating system.
Examples of hypervisors include Xenserver, KVM, VMware,
Microsoft’s Hyper-V, and emulation programs such as
QEMU.

The hypervisor 230 includes the functionality to add,
remove, and modify a number of logical containers 232a-n
associated with the hypervisor. Zero, one, or many of the
logical containers 232a-» contain associated operating envi-
ronments 234a-r. The logical containers 232a-n can imple-
ment various interfaces depending upon the desired charac-
teristics of the operating environment. In one embodiment, a
logical container 232 implements a hardware-like interface,
such that the associated operating environment 234 appears to
be running on or within an information processing system
such as the information processing system 210. For example,
one embodiment of a logical container 234 could implement
an interface resembling an x86, x86-64, ARM, or other com-
puter instruction set with appropriate RAM, busses, disks,
and network devices. A corresponding operating environ-
ment 234 for this embodiment could be an operating system
such as Microsoft Windows, Linux, Linux-Android, or Mac
OS X. In another embodiment, a logical container 232 imple-
ments an operating system-like interface, such that the asso-
ciated operating environment 234 appears to be running on or
within an operating system. For example one embodiment of
this type of logical container 232 could appear to be a
Microsoft Windows, Linux, or Mac OS X operating system.
Another possible operating system includes an Android oper-
ating system, which includes significant runtime functional-
ity on top of a lower-level kernel. A corresponding operating
environment 234 could enforce separation between users and
processes such that each process or group of processes
appeared to have sole access to the resources of the operating
system. In a third environment, a logical container 232 imple-
ments a software-defined interface, such a language runtime
or logical process that the associated operating environment
234 can use to run and interact with its environment. For
example one embodiment of'this type oflogical container 232
could appear to be a Java, Dalvik, Lua, Python, or other
language virtual machine. A corresponding operating envi-
ronment 234 would use the built-in threading, processing, and
code loading capabilities to load and run code. Adding,
removing, or modifying a logical container 232 may or may
not also involve adding, removing, or modifying an associ-
ated operating environment 234. For ease of explanation
below, these operating environments will be described in
terms of an embodiment as “Virtual Machines,” or “VMs,”
but this is simply one implementation among the options
listed above.

In one or more embodiments, a VM has one or more virtual
network interfaces 236. How the virtual network interface is
exposed to the operating environment depends upon the
implementation of the operating environment. In an operating
environment that mimics a hardware computer, the virtual
network interface 236 appears as one or more virtual network
interface cards. In an operating environment that appears as
an operating system, the virtual network interface 236
appears as a virtual character device or socket. In an operating
environment that appears as a language runtime, the virtual
network interface appears as a socket, queue, message ser-
vice, or other appropriate construct. The virtual network
interfaces (VNIs) 236 may be associated with a virtual switch
(Vswitch) at either the hypervisor or container level. The VNI
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236 logically couples the operating environment 234 to the
network, and allows the VMs to send and receive network
traffic. In one embodiment, the physical network interface
card 214 is also coupled to one or more VMs through a
Vswitch.

In one or more embodiments, each VM includes identifi-
cation data for use naming, interacting, or referring to the
VM. This can include the Media Access Control (MAC)
address, the Internet Protocol (IP) address, and one or more
unambiguous names or identifiers.

In one or more embodiments, a “volume” is a detachable
block storage device. In some embodiments, a particular vol-
ume can only be attached to one instance at a time, whereas in
other embodiments a volume works like a Storage Area Net-
work (SAN) so that it can be concurrently accessed by mul-
tiple devices. Volumes can be attached to either a particular
information processing device or a particular virtual machine,
so they are or appear to be local to that machine. Further, a
volume attached to one information processing device or VM
can be exported over the network to share access with other
instances using common file sharing protocols. In other
embodiments, there are areas of storage declared to be “local
storage.” Typically a local storage volume will be storage
from the information processing device shared with or
exposed to one or more operating environments on the infor-
mation processing device. Local storage is guaranteed to exist
only for the duration of the operating environment; recreating
the operating environment may or may not remove or erase
any local storage associated with that operating environment.

Turning now to FIG. 3, a simple network operating envi-
ronment 300 for a cloud controller or cloud service is shown.
The network operating environment 300 includes multiple
information processing systems 310a-», each of which cor-
respond to a single information processing system 210 as
described relative to FIG. 2, including a hypervisor 230, zero
or more logical containers 232 and zero or more operating
environments 234. The information processing systems
310q-n are connected via a communication medium 312,
typically implemented using a known network protocol such
as Ethernet, Fibre Channel, Infiniband, or IEEE 1394. For
ease of explanation, the network operating environment 300
will be referred to as a “cluster,” “group,” or “zone” of oper-
ating environments. The cluster may also include a cluster
monitor 314 and a network routing element 316. The cluster
monitor 314 and network routing element 316 may be imple-
mented as hardware, as software running on hardware, or may
be implemented completely as software. In one implementa-
tion, one or both of the cluster monitor 314 or network routing
element 316 is implemented in a logical container 232 using
an operating environment 234 as described above. In another
embodiment, one or both of the cluster monitor 314 or net-
work routing element 316 is implemented so that the cluster
corresponds to a group of physically co-located information
processing systems, such as in a rack, row, or group of physi-
cal machines.

The cluster monitor 314 provides an interface to the cluster
in general, and provides a single point of contact allowing
someone outside the system to query and control any one of
the information processing systems 310, the logical contain-
ers 232 and the operating environments 234. In one embodi-
ment, the cluster monitor also provides monitoring and
reporting capabilities.

The network routing element 316 allows the information
processing systems 310, the logical containers 232 and the
operating environments 234 to be connected together in a
network topology. The illustrated tree topology is only one
possible topology; the information processing systems and
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operating environments can be logically arrayed in a ring, in
a star, in a graph, or in multiple logical arrangements through
the use of vVLANS.

In one embodiment, the cluster also includes a cluster
controller 318. The cluster controller is outside the cluster,
and is used to store or provide identifying information asso-
ciated with the different addressable elements in the cluster—
specifically the cluster generally (addressable as the cluster
monitor 314), the cluster network router (addressable as the
network routing element 316), each information processing
system 310, and with each information processing system the
associated logical containers 232 and operating environments
234.

The cluster controller 318 is outside the cluster, and is used
to store or provide identifying information associated with
the different addressable elements in the cluster—specifically
the cluster generally (addressable as the cluster monitor 314),
the cluster network router (addressable as the network routing
element 316), each information processing system 310, and
with each information processing system the associated logi-
cal containers 232 and operating environments 234. In one
embodiment, the cluster controller 318 includes a registry of
VM information 319. In a second embodiment, the registry
319 is associated with but not included in the cluster control-
ler 318.

In one embodiment, the cluster also includes one or more
instruction processors 320. In the embodiment shown, the
instruction processor is located in the hypervisor, but it is also
contemplated to locate an instruction processor within an
active VM or at a cluster level, for example in a piece of
machinery associated with a rack or cluster. In one embodi-
ment, the instruction processor 320 is implemented in a tai-
lored electrical circuit or as software instructions to be used in
conjunction with a processor to create a hardware-software
combination that implements the specific functionality
described herein. To the extent that one embodiment includes
computer-executable instructions, those instructions may
include software that is stored on a computer-readable
medium. Further, one or more embodiments have associated
with them a buffer 322. The buffer 322 can take the form of
data structures, a memory, a computer-readable medium, or
an off-script-processor facility. For example, one embodi-
ment uses a language runtime as an instruction processor 320.
The language runtime can be run directly on top of the hyper-
visor, as a process in an active operating environment, or can
be run from a low-power embedded processor. In a second
embodiment, the instruction processor 320 takes the form of
a series of interoperating but discrete components, some or all
of which may be implemented as software programs. For
example, in this embodiment, an interoperating bash shell,
gzip program, an rsync program, and a cryptographic accel-
erator chip are all components that may be used in an instruc-
tion processor 320. In another embodiment, the instruction
processor 320 is a discrete component, using a small amount
of'flash and a low power processor, such as a low-power ARM
processor. This hardware-based instruction processor can be
embedded on a network interface card, built into the hardware
of a rack, or provided as an add-on to the physical chips
associated with an information processing system 310. It is
expected that in many embodiments, the instruction proces-
sor 320 will have an integrated battery and will be able to
spend an extended period of time without drawing current.
Various embodiments also contemplate the use of an embed-
ded Linux or Linux-Android environment.

In the disclosure that follows, the information processing
devices as described relative to FIG. 2 and the clusters as
described relative to F1G. 3 are used as underlying infrastruc-
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ture to build and administer various cloud services. Except
where noted specifically, either a single information process-
ing device or a cluster can be used interchangeably to imple-
ment a single “node,” “service,” or “controller.” Where a
plurality of resources are described, such as a plurality of
storage nodes or a plurality of compute nodes, the plurality of
resources can be implemented as a plurality of information
processing devices, as a one-to-one relationship of informa-
tion processing devices, logical containers, and operating
environments, or in an MxN relationship of information pro-
cessing devices to logical containers and operating environ-
ments.

Various aspects of the services implemented in the cloud
computing system may be referred to as “virtual machines” or
“virtual devices”; as described above, those refer to a particu-
lar logical container and operating environment, configured
to perform the service described. The term “instance” is
sometimes used to refer to a particular virtual machine run-
ning inside the cloud computing system. An “instance type”
describes the compute, memory and storage capacity of par-
ticular VM instances.

In various embodiments, groups of resources (information
processing systems, logical containers, operating environ-
ments, users, accounts, etc.) may be organized into “zones.” A
zone is defined as a group of one or more resources that share
one or more common characteristics and are grouped together
to achieve some function. For example, one example ofa zone
is an availability zone, which is a group of resources subject
to a correlated loss of access or data as a result of a particular
event. For example, a group of operating environments that
use a common underlying network connection, power con-
nection, or computer-readable medium is subject to loss of
access 1o its stored objects as a result of a failure of one of
these resources. A group of resources in the same cluster may
suffer aloss of access if the cluster is contained within a single
physical building.

Zones may overlap and may be defined for different rea-
sons. For example, a group of resources that share a com-
puter-readable medium may be defined to be in one zone. A
plurality of information processing devices 210 (and their
underlying hypervisors 230, logical containers 232 and oper-
ating environments 234) in a given storage rack or cabinet
may be defined to be in a zone, A plurality of information
processing devices 210 (and their underlying hypervisors
230, logical containers 232 and operating environments 234)
coupled to the same networking switch may be defined to be
in a zone; and a plurality of information processing devices
210 (and their underlying hypervisors 230, logical containers
232 and operating environments 234), in a given datacenter
may be defined to be in a zone.

In another embodiment, a zone is defined by the availabil-
ity of specialized hardware or by hardware of a certain class.
For example, a plurality of information processing devices
210 (and their underlying hypervisors 230, logical containers
232 and operating environments 234) that have access to
high-throughput and low-latency storage, like a solid state
disk, may be defined to be in a zone. Zones may be organized
to reflect differing amounts of memory, processor speeds, age
of installation, type of operating system or hypervisor, or any
other underlying difference in platforms.

One of skill in the art will recognize that the examples of
zones provided above are not limiting, and a variety of pos-
sible organizational schemes fall into the scope of the present
disclosure.

Within the architecture described above, various services
are provided, and different capabilities can be included
through a plug-in architecture. Although specific services and
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plugins are detailed below, these disclosures are intended to
be representative of the services and plugins available for
integration across the entire cloud computing system 110.

Networking

Referring now to FIG. 4, a diagram of an laaS-style net-
work service 400 is shown according to one embodiment. The
network has one or more physical edge routers 402 which
connect to the broader Internet. These edge routers 402 are
connected to an underlying physical distribution network
404. The implementation of the physical distribution network
404 may encompass various protocols or services, including
but not limited to electrical, optical, or wireless connections at
the physical layer; Ethernet, Fibre channel, ATM, and
SONET at the MAC layer; MPLS between layers 2 and 3, and
TCP, UDP, ZeroMQ or other services at the connection layer.
The physical distribution network 404 corresponds to the
internal network 114 described relative to FIG. 1. The physi-
cal distribution network 404 is connected to physical inter-
faces 423 at each physical information processing system
420. The physical information processing systems 420 cor-
respond to the information processing systems 210 as
described relative to FIG. 2, with a hypervisor 421, and oper-
ating environments within logical containers 422, each of
which with one or more virtual network interfaces (VNIs)
424.

On top of the physical distribution network is a virtual
network service defining one or more virtual networks and
virtual network devices. The virtual network service 400 cor-
responds to the virtual network 116 as describe relative to
FIG. 1. The virtual network service 400 defines packet flows
between hosts in the network and is used to logically route
packets independent of the underlying physical infrastruc-
ture. In one embodiment, the virtual network service uses
virtual routers 406 and 426 to define and manage these flows.
Each virtual router (both virtual routers 406 and 426) have an
API 410 that allows the routing tables, packet filters, and
underlying logical network fabric to be remotely reconfig-
ured. The virtual routers may be located in the physical edge
routers 402, or within one of the information processing
systems 420, within the hypervisor 421, within a particular
operating environment 422, or at an outside network routing
controller 430. These virtual network devices can work
together to present multiple logical connections and networks
that are independent from each other even though they are
running on the same physical distribution network 404. Infor-
mation from a particular flow is tunneled or bridged from one
physical network segment to another or is kept logically con-
nected by associating it with an ATM-like circuit or an MPLS-
style label.

The virtual network service API 410 allows for creation
and management of virtual networks each of which can have
one or more ports. A port on a virtual network can be attached
to a network interface, where a network interface is anything
which can source traffic, such as physical interface 423 or one
of the VNIs 424.

The API 410 allows users of the network as well as cloud
administrators to declaratively define a network architecture
including a series of virtual connections, routing rules, and
filters. The VNIs 424 are then able to interact with the virtual
network in the same way as a physical network without need-
ing to also configure the underlying physical distribution
network 404. Adapters are used to bridge between the virtual
network devices and the physical devices without exposing
the way in which the physical devices are actually connected.

In one embodiment, this is done by using programmable
kernel bridges. A network device is instantiated within an
operating system to communicate with physical interface 423
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operating over a defined protocol, such as Ethernet or MPLS.
A VNI 424 is also defined by the operating system. While the
VNI 424 will often be associated with an operating environ-
ment, logical container, or virtual machine, those of skill in
the art will recognize that VNIs 424 can be created as pure
abstractions to help administer or logically control the net-
work flows. Finally, one or more kernel bridges are defined
routing the layer 2 packets from the physical network inter-
face 423 to one or more VNIs 424. The raw packets arriving
on the physical interface 423 are routed according to the
established bridges and then used by the operating environ-
ments, hypervisor, or physical device.

Because the connections across the kernel bridges are soft-
ware-defined and completely arbitrary, the routing fabric
associated with a particular physical network interface 423
can be reconfigured by changing the bridges associated with
that interface. On a more fine-grained level, the routing
between VNIs 424 is also software-defined, making the flows
across the VNIs 424 similarly malleable to software manipu-
lation via the API 410.

In a further embodiment, an entire flow coming off of a
physical network interface 423 or a flow coming off of a VNI
424 can be filtered, diverted, or inspected independently. In
this way, advanced networking functionality such as load
balancing, firewalls, layer 7 routing, and geographic routing
can be accomplished in a multi-tenant environment. One
implementation of this uses standard networking utilities.
The physical network device 423 and the VNIs 424, while
different to the kernel, expose a standard network or socket
API to upper-level layers and applications. Accordingly, a
standard firewall is able to filter the packets and send them on
without being aware that the packets being filtered are arriv-
ing over a virtual network interface instead of a physical one.

In another embodiment, the packet-routing logic within the
cloud system as a whole can be centrally directed using net-
work routing controller 430. In standard networks, each
router has an independent routing table and seeks to find the
best route for each packet that arrives by examining its exist-
ing routing tables and probing the network around it using
various protocols adapted for that purpose. The network ser-
vice 400 can work identically to standard networks in this
respect, but the ability to dynamically sense and control the
flows using API 410 allows routing decisions to be made
centrally when that makes more sense. Network routing con-
troller 430 may, for example, control the routing across vir-
tual routers 406 and 426 to direct traffic in a way that may not
be locally optimal but provides for greater global throughput
and higher overall utilization.

To accommodate these use cases, one embodiment of the
virtual network service 400 provides a plug-in architecture
allowing entry routing (controlled by virtual router 406),
overall network routing (controlled by the network routing
controller 430 or by the combination of virtual routers) or any
particular router 426 to have a tenant-defined flow routing and
filtering policy. For example, one plugin allows a tenant-
specific security policy to be implemented on a flow. In this
embodiment, a virtual router 426 is instantiated for use by a
particular user (the “user router”). The user router can be
implemented in the hypervisor 421 or in a distinct operating
environment 422. The user router has an API 410, just like the
other virtual routers 426. In one embodiment, routing rules
can be setusing the AP1410. In a second embodiment, a series
of rules can be provided and loaded by the user router 426.
This loadable ruleset can be implemented using a dynami-
cally loadable or runnable program that has a series of
expected inputs and provides its information on a defined
series of outputs. In one embodiment these are “stdin” and
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“stdout.” In a second embodiment, these are provided as
function calls within a program module. When a packet
arrives at edge router 402, the virtual router 406 identifies it as
being logically addressed to a particular operating environ-
ment associated with the user and routes it to flow to the
defined user router 426 instantiated for the customer by way
of'the physical interface 423 and possibly other virtual routers
426 along the way. When the packet arrives at user router 426,
the tenant-defined rules and filters are applied to the packet
and the flow is stopped, edited, or redirected accordingly.

A second embodiment allows QoS policies to be imple-
mented ona flow. As noted above, a centralized routing policy
allows global maximization of network utilization. In this
embodiment, a user-defined network routing controller 430
(the “user controller”) is defined, or a plug-in or ruleset is
loaded into a system-wide network routing controller using
the same functionality described above. When a high-priority
packet arrives or is sent, the user controller can route other
packets on less-speedy routes and keep the most direct route
free for high-priority packets. In this way the delay on best-
effort packets is due mostly to a higher number of hops as
opposed to rate limiting; each individual router (either physi-
cal or virtual) is operating at its peak capacity. The load is
managed by virtually spreading out the number of routers
handling packets rather than by limiting the numbers of pack-
ets being routed at a particular node.

Referring now to FIG. 5a, a network service-implemented
VLAN available to one embodiment of the system is shown.
The network 500 is one embodiment of a virtual network 116
as discussed relative to FIG. 1, and is implemented on top of
the internal network layer 114. A particular node is connected
to the virtual network 500 through a virtual network interface
236 operating through physical network interface 214. The
VLANSs, VSwitches, VPNs, and other pieces of network hard-
ware (real or virtual) are may be network routing elements
316 or may serve another function in the communications
medium 312.

In one embodiment, the cloud computing system 110 uses
both “fixed” IPs and “floating” IPs to address virtual
machines. Fixed IPs are assigned to an instance on creation
and stay the same until the instance is explicitly terminated.
Floating IPs are IP addresses that can be dynamically associ-
ated with an instance. A floating IP address can be disassoci-
ated and associated with another instance at any time.

Different embodiments include various strategies for
implementing and allocating fixed IPs, including “flat” mode,
a “flat DHCP” mode, and a “VLAN DHCP” mode.

In one embodiment, fixed IP addresses are managed using
a flat Mode. In this embodiment, an instance receives a fixed
IP from a pool of available IP addresses. All instances are
attached to the same bridge by default. Other networking
configuration instructions are placed into the instance before
it is booted or on boot.

In another embodiment, fixed IP addresses are managed
using a flat DHCP mode. Flat DHCP mode is similar to the flat
mode, in that all instances are attached to the same bridge.
Instances will attempt to bridge using the default Ethernet
device or socket. Instead of allocation from a fixed pool, a
DHCP server listens on the bridge and instances receive their
fixed IPs by doing a dhcpdiscover.

Turning now to one embodiment using VLAN DHCP
mode, there are two groups of off-local-network users, the
private users 502 and the public internet users 504. To respond
to communications from the private users 502 and the public
users 504, the network 500 includes three nodes, network
node 510, private node 520, and public node 530. The nodes
include one or more virtual machines or virtual devices, such
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as DNS/DHCP server 512 and virtual router 514 on network
node 510, VPN 522 and private VM 524 on private node 520,
and public VM 532 on public node 530.

In one embodiment, VLAN DHCP mode requires a switch
that supports host-managed VLLAN tagging. In one embodi-
ment, there is a VLAN 506 and bridge 516 for each project or
group. In the illustrated embodiment, there is a VLLAN asso-
ciated with a particular project. The project receives a range
of'private IP addresses that are only accessible from inside the
VLAN. and assigns an IP address from this range to private
node 520, as well as to a VNI in the virtual devices in the
VLAN. In one embodiment, DHCP server 512 is running on
a VM that receives a static VLAN IP address at a known
address, and virtual router 514, VPN 522, private VM 524,
and public VM 532 all receive private IP addresses upon
request to the DHCP server running on the DHCP server VM.
In addition, the DHCP server provides a public IP address to
the virtual router 514 and optionally to the public VM 532. In
a second embodiment, the DHCP server 512 is running on or
available from the virtual router 514, and the public IP
address of the virtual router 514 is used as the DHCP address.

In an embodiment using VLAN DHCP mode, there is a
private network segment for each project’s or group’s
instances that can be accessed via a dedicated VPN connec-
tion from the Internet. As described below, each VLAN
project or group gets its own VLAN, network bridge, and
subnet. In one embodiment, subnets are specified by the net-
work administrator, and assigned dynamically to a project or
group when required. A DHCP Server is started for each
VLAN to pass out IP addresses to VM instances from the
assigned subnet. All instances belonging to the VL AN project
or group are bridged into the same VLAN. In this fashion,
network traffic between VM instances belonging to the same
VLAN is always open but the system can enforce isolation of
network traffic between different projects by enforcing one
VLAN per project.

As shown in FIG. 5a, VLAN DHCP mode includes provi-
sions for both private and public access. For private access
(shown by the arrows to and from the private users cloud 502),
users create an access keypair (as described further below) for
access to the virtual private network through the gateway
VPN 522. From the VPN 522, both the private VM 524 and
the public VM 532 are accessible via the private IP addresses
valid on the VLAN.

Public access is shown by the arrows to and from the public
users cloud 504. Communications that come in from the
public users cloud arrive at the virtual router 514 and are
subject to network address translation (NAT) to access the
public virtual machine via the bridge 516. Communications
out from the private VM 524 are source NATted by the bridge
516 so that the external source appears to be the virtual router
514. If the public VM 532 does not have an externally
routable address, communications out from the public VM
532 may be source NATted as well.

In one embodiment of VLAN DHCP mode, the second IP
in each private network is reserved for the VPN instance 522.
This gives a consistent IP to the instance so that forwarding
rules can be more easily created. The network for each project
is given a specific high-numbered port on the public IP of the
network node 510. This port is automatically forwarded to the
appropriate VPN port on the VPN 522.

In one embodiment, each group or project has its own
certificate authority (CA) 523. The CA 523 is used to sign the
certificate for the VPN 522, and is also passed to users on the
private users cloud 502. When a certificate is revoked, a new
Certificate Revocation List (CRL) is generated. The VPN 522
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will block revoked users from connecting to the VPN if they
attempt to connect using a revoked certificate.

In a project VL AN organized similarly to the embodiment
described above, the project has an independent RFC 1918 IP
space; public IP via NAT; has no default inbound network
access without public NAT; has limited, controllable out-
bound network access; limited, controllable access to other
project segments; and VPN access to instance and cloud APIs.
Further, there is a DMZ segment for support services, allow-
ing project metadata and reporting to be provided in a secure
manner.

In one embodiment, VLLANs are segregated using 802.1q
VLAN tagging in the switching layer, but other tagging
schemes such as 802.1ad, MPLS, or frame tagging are also
contemplated. The flows are defined by the virtual network
400 as described relative to FIG. 4, so the underlying imple-
mentation can be chosen independent of the logical virtual
network on top. Network hosts create VI.AN-specific inter-
faces and bridges as required using a user router 426.

In one embodiment, private VM 524 has per-VLAN inter-
faces and bridges created as required. These do not have IP
addresses in the host to protect host access. Access is pro-
vided viarouting table entries created per project and instance
to protect against IP/MAC address spoofing and ARP poison-
ing.

FIG. 55 is a flowchart showing the establishment of a
VLAN for a project according to one embodiment. The pro-
cess 550 starts at step 551, when a VM instance for the project
is requested. When running a VM instance, a user needs to
specify a project for the instances, and the applicable security
rules and security groups (as described herein) that the
instance should join. At step 552, a cloud controller deter-
mines if this is the first instance to be created for the project.
If' this is the first, then the process proceeds to step 553. If the
project already exists, then the process moves to step 559. At
step 553, a user controller is identified to act as the network
host for the project. This may involve creating a virtual net-
work device and assigning it the role of network controller. In
one embodiment, this is a virtual router 514. At step 555, an
unused VLAN id and unused subnet are identified. At step
555, the VLAN id and subnet are assigned to the project. At
step 556, DHCP server 512 and bridge 516 are instantiated
and registered. At step 557, the VM instance request is exam-
ined to see if the request is for a private VM 524 or public VM
532. If the request is for a private VM, the process moves to
step 558. Otherwise, the process moves to step 560. At step
558, the VPN 522 is instantiated and allocated the second IP
in the assigned subnet. At step 559, the subnet and a VLAN
have already been assigned to the project. Accordingly, the
requested VM is created and assigned and assigned a private
IP within the project’s subnet. At step 560, the routing rules in
bridge 516 are updated to properly NAT traffic to or from the
requested VM.

Those of skill in the art will note that the VPN and VLAN
functionality described relative to FIGS. 54 and 54 can appear
to be configured and provisioned as in a legacy network, or
can be completely implemented virtually using plugins, vir-
tual routers, and centralized routing. The underlying imple-
mentation is transparent to the consumer of the network ser-
vices. Other plugin implementations are defined similarly;
load balancing can be dynamically adjusted based upon
actual load; failover or service scaling can be defined “in the
network,” and can occur transparently. Various services are
envisioned, including basic network connectivity, network
packet filtering, IP address management, load balancing,
QoS, layer 7 routing, VLLANs, [.2-in-1.3 (and other layer)
tunneling, advanced security services and geo-routing. Mul-
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tiple plugins can be combined to provide layered capabilities,
with each plugin service being defined within a separate
“segment” of the network for visibility and debuggability.

Message Service

Between the various virtual machines and virtual devices,
it may be necessary to have a reliable messaging infrastruc-
ture. In various embodiments, a message queuing service is
used for both local and remote communication so that there is
no requirement that any of the services exist on the same
physical machine. Various existing messaging infrastructures
are contemplated, including AMQP, ZeroMQ, STOMP and
XMPP. Note that this messaging system may or may not be
available for user-addressable systems; in one preferred
embodiment, there is a separation between internal messag-
ing services and any messaging services associated with user
data. The messaging service may run alongside or on top of
the network service 400 described relative to FIGS. 4-5b.

In one embodiment, the message service sits between vari-
ous components and allows them to communicate in a loosely
coupled fashion. This can be accomplished using Remote
Procedure Calls (RPC hereinafter) to communicate between
components, built atop either direct messages and/or an
underlying publish/subscribe infrastructure. In a typical
embodiment, it is expected that both direct and topic-based
exchanges are used. This allows for decoupling of the com-
ponents, full asynchronous communications, and transparent
balancing between equivalent components. In some embodi-
ments, calls between different APIs can be supported over the
distributed system by providing an adapter class which takes
care of marshalling and unmarshalling of messages into func-
tion calls.

In one embodiment, a cloud controller 120 (or the appli-
cable cloud service 130) creates two queues at initialization
time, one that accepts node-specific messages and another
that accepts generic messages addressed to any node of a
particular type. This allows both specific node control as well
as orchestration of the cloud service without limiting the
particular implementation of a node. In an embodiment in
which these message queues are bridged to an AP, the API
can act as a consumet, server, or publisher.

Turning now to FIG. 64, one implementation of a message
service 140 is shown at reference number 600. For simplicity
of description, FIG. 6a shows the message service 600 when
a single instance 602 is deployed and shared in the cloud
computing system 110, but the message service 600 can be
either centralized or fully distributed.

In one embodiment, the message service 600 keeps traffic
associated with different queues or routing keys separate, so
that disparate services can use the message service without
interfering with each other. Accordingly, the message queue
service may be used to communicate messages between net-
work elements, between cloud services 130, between cloud
controllers 120, between network elements, or between any
group of sub-elements within the above. More than one mes-
sage service 600 may be used, and a cloud service 130 may
use its own message service as required.

For clarity of exposition, access to the message service 600
will be described in terms of “Invokers” and “Workers,” but
these labels are purely expository and are not intended to
convey a limitation on purpose; in some embodiments, a
single component (such as a VM) may act first as an Invoker,
then as a Worker, the other way around, or simultaneously in
each role. An Invoker is a component that sends messages in
the system via two operations: 1) an RPC (Remote Procedure
Call) directed message and ii) an RPC broadcast. A Worker is
a component that receives messages from the message system
and replies accordingly.
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In one embodiment, there is a message server including
one or more exchanges 610. In a second embodiment, the
message system is “brokerless,” and one or more exchanges
are located at each client. The exchanges 610 act as internal
message routing elements so that components interacting
with the message service 600 can send and receive messages.
In one embodiment, these exchanges are subdivided further
into a direct exchange 610a and a topic exchange 6105. An
exchange 610 is a routing structure or system that exists in a
particular context. In a currently preferred embodiment, mul-
tiple contexts can be included within a single message service
with each one acting independently of the others. In one
embodiment, the type of exchange, such as a direct exchange
610a vs. topic exchange 6105 determines the routing policy.
In a second embodiment, the routing policy is determined via
a series of routing rules evaluated by the exchange 610 via a
plugin service described further below.

The direct exchange 610a is a routing element created
during or for RPC directed message operations. In one
embodiment, there are many instances of a direct exchange
610a that are created as needed for the message service 600.
In a further embodiment, there is one direct exchange 610a
created for each RPC directed message received by the sys-
tem.

The topic exchange 6105 is a routing element created dur-
ing or for RPC directed broadcast operations. In one simple
embodiment, every message received by the topic exchange
is received by every other connected component. In a second
embodiment, the routing rule within a topic exchange is
described as publish-subscribe, wherein different compo-
nents can specify a discriminating function and only topics
matching the discriminator are passed along. In one embodi-
ment, there are many instances of a topic exchange 6105 that
are created as needed for the message service 600. In one
embodiment, there is one topic-based exchange for every
topic created in the cloud computing system. In a second
embodiment, there are a set number of topics that have pre-
created and persistent topic exchanges 6105.

Within one or more of the exchanges 610, it may be useful
to have a queue element 615. A queue 615 is a message
stream; messages sent into the stream are kept in the queue
615 until a consuming component connects to the queue and
fetches the message. A queue 615 can be shared or can be
exclusive. In one embodiment, queues with the same topic are
shared amongst Workers subscribed to that topic.

In a typical embodiment, a queue 615 will implement a
FIFO policy for messages and ensure that they are delivered
in the same order that they are received. In other embodi-
ments, however, a queue 615 may implement other policies,
such as LIFO, a priority queue (highest-priority messages are
delivered first), or age (oldest objects in the queue are deliv-
ered first), or other configurable delivery policies. In other
embodiments, a queue 615 may or may not make any guar-
antees related to message delivery or message persistence.

In one embodiment, element 620 is a topic publisher. A
topic publisher 620 is created, instantiated, or awakened
when an RPC directed message or an RPC broadcast opera-
tion is executed; this object is instantiated and used to push a
message to the messages system. Every publisher connects
always to the same topic-based exchange; its life-cycle is
limited to the message delivery.

In one embodiment, element 630 is a direct consumer. A
direct consumer 630 is created, instantiated, or awakened if
an RPC directed message operation is executed; this compo-
nent is instantiated and used to receive a response message
from the queuing system. Every direct consumer 630 con-
nects to a unique direct-based exchange via a unique exclu-
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sive queue, identified by a UUID or other unique name. The
life-cycle of the direct consumer 630 is limited to the message
delivery. In one embodiment, the exchange and queue iden-
tifiers are included the message sent by the topic publisher
620 for RPC directed message operations.

In one embodiment, element 640 is a topic consumer. In
one embodiment, a topic consumer 640 is created, instanti-
ated, or awakened at system start. In a second embodiment, a
topic consumer 640 is created, instantiated, or awakened
when a topic is registered with the message system 600. In a
third embodiment, a topic consumer 640 is created, instanti-
ated, or awakened at the same time that a Worker or Workers
are instantiated and persists as long as the associated Worker
or Workers have not been destroyed. In this embodiment, the
topic consumer 640 is used to receive messages from the
queue and it invokes the appropriate action as defined by the
Worker role. A topic consumer 640 connects to the topic-
based exchange either via a shared queue or via a unique
exclusive queue. In one embodiment, every Worker has two
associated topic consumers 640, one that is addressed only
during an RPC broadcast operations (and it connects to a
shared queue whose exchange key is defined by the topic) and
the other that is addressed only during an RPC directed mes-
sage operations, connected to a unique queue whose with the
exchange key is defined by the topic and the host.

In one embodiment, element 660 is a direct publisher. In
one embodiment, a direct publisher 660 is created, instanti-
ated, or awakened for RPC directed message operations and it
is instantiated to return the message required by the request/
response operation. The object connects to a direct-based
exchange whose identity is dictated by the incoming mes-
sage.

Turning now to FIG. 65, one embodiment of the process of
sending an RPC directed message is shown relative to the
elements of the message system 600 as described relative to
FIG. 6a. At step 660, a topic publisher 620 is instantiated. At
step 661, the topic publisher 620 sends a message to an
exchange 6105. At step 662, a direct consumer 630 is instan-
tiated to wait for the response message. At step 663, the
message is dispatched by the exchange 6105. At step 664, the
message is fetched by the topic consumer 640 dictated by the
routing key (either by topic or by topic and host). At step 666,
the message is passed to a Worker associated with the topic
consumer 640. If needed, at step 666, a direct publisher 660 is
instantiated to send a response message via the message sys-
tem 600. At step 667, the direct publisher 640 sends a message
to an exchange 610a. At step 668, the response message is
dispatched by the exchange 610a. At step 669, the response
message is fetched by the direct consumer 630 instantiated to
receive the response and dictated by the routing key. At step
670, the message response is passed to the Invoker.

Turning now to FIG. 6c, one embodiment of the process of
sending an RPC broadcast message is shown relative to the
elements of the message system 600 as described relative to
FIG. 6a. At step 680, a topic publisher 620 is instantiated. At
step 681, the topic publisher 620 sends a message to an
exchange 6105. At step 682, the message is dispatched by the
exchange 6105. At step 683, the message is fetched by a topic
consumer 640 dictated by the routing key (either by topic or
by topic and host). At step 684, the message is passed to a
Worker associated with the topic consumer 640.

In some embodiments, a response to an RPC broadcast
message can be requested. In that case, the process follows
the steps outlined relative to FIG. 65 to return a response to the
Invoker.

As noted above, in one embodiment the routing policy is
determined via a series of routing rules evaluated by the
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exchange 610 via a plugin service. Unlike the network service
400, the message service 600 is already software-defined, so
it is not necessary to create pseudo-hardware ports to bridge
the physical-virtual gap. Instead, the routing functions of the
message service can be directly accessed or modified using an
API and/or a plugin interface. In one embodiment, a plugin is
implemented as a series of loadable and executable rules that
can be provided to the message service 600 and run by the
direct exchange 610q or the topic exchange 6105 as part of its
routing. In one embodiment, this loadable ruleset can be
implemented using a dynamically loadable or runnable pro-
gram that has a series of expected inputs and provides its
information on a defined series of outputs. In one embodi-
ment these are “stdin” and “stdout.” In a second embodiment,
these are provided as function calls within a program module.

In one embodiment, the plugin interface is a messaging
“device” that implements a particular messaging pattern. For
example, one embodiment uses a “forwarding” device. This
is particularly useful in a cloud architecture where the end-
points of a message are relatively dynamic and there may not
be a stable connection point. This plugin controls the routing
of messages in a queue and passes messages from one (pos-
sibly dynamic) messaging endpoint to another. Another pos-
sible plugin “device” embodiment implements a pipeline-
style messaging architecture. Messages arriving at one end of
the device are sent to one or more downstream Workers,
where the messages can be processed in parallel instead of
serially. A third embodiment of a plugin device is a load
balancer.

In the image below we can see such a device being used, in
this situation both the client and the server initialize a con-
nection to the forwarder, which binds to two different ports.
Using such a device will remove the need of extra application
logic, as you will not need to maintain a list of connected
peers.

Rule Engines and Plugins

Because many aspects of the cloud computing system do
not allow direct access to the underlying hardware or services,
many aspects of the cloud computing system are handled
declaratively, through rule-based computing. Rule-based
computing organizes statements into a data model that can be
used for deduction, rewriting, and other inferential or trans-
formational tasks. The data model can then be used to repre-
sent some problem domain and reason about the objects in
that domain and the relations between them. In one embodi-
ment, one or more controllers or services have an associated
rule processor that performs rule-based deduction, inference,
and reasoning. Rule engines are particularly applicable as a
plugin interface, where particular outcome can be presented
either as the outcome of a series of rules provided by an end
user or as the output of a “black box” that takes one or more
defined inputs and returns an output.

Rule Engines can be implemented similarly to script pro-
cessors as described relative to FIG. 3, and may be imple-
mented as a sub-module of a script processor where needed.
In other embodiments, Rule Engines can be implemented as
discrete components, for example as a tailored electrical cir-
cuit or as software instructions to be used in conjunction with
a hardware processor to create a hardware-software combi-
nation that implements the specific functionality described
herein. To the extent that one embodiment includes computer-
executable instructions, those instructions may include soft-
ware that is stored on a computer-readable medium. Further,
one or more embodiments have associated with them a buffer.
The buffer can take the form of data structures, a memory, a
computer-readable medium, or an off-rule-engine facility.
For example, one embodiment uses a language runtime as a
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rule engine, running as a discrete operating environment, as a
process in an active operating environment, or can be run
from a low-power embedded processor. In a second embodi-
ment, the rule engine takes the form of a series of interoper-
ating but discrete components, some or all of which may be
implemented as software programs. In another embodiment,
the rule engine is a discrete component, using a small amount
of'flash and a low power processor, such as a low-power ARM
processor.

Security and Access Control

One common need for cloud computing systems is an
authentication and authorization system. Turning now to FIG.
7, one exemplary authentication (“authn’) and authorization
(“authz”) system is shown at 700. The authn/authz system
shown at 700 is exemplary only and can be used in several
different aspects within a cloud computing system. For
example, one embodiment uses a single authn/authz system
for the entire cloud computing “platform,” including all sub-
sidiary services. Another embodiment has separate authn/
authz services for each subsidiary service. A third embodi-
ment has a splitauthn/authz service, with authn being handled
globally so that user, project, tenant, and account details are
consistent, but allowing authz to be handled within each
subsidiary service so that the privileges granted are logically
and physically separable. A further embodiment has multiple
authn/authz services, where there are one or more authn/authz
services 600 that are used to mediate the authentication and
authorization of users to interact with the cloud computing
platform and its subsidiary components, and one or more
authn/authz services 700 that are tenant-specific and used to
control and expose internal virtual cloud resources in a con-
trolled fashion. Rule-based access controls govern the use
and interactions of these logical entities.

In a preferred embodiment, a role-based computing system
is a system in which identities and resources are managed by
aggregating them into “roles” based on job functions, physi-
cal location, legal controls, and other criteria. These roles can
be used to model organizational structures, manage assets, or
organize data. By arranging roles and the associated rules into
graphs or hierarchies, these roles can be used to reason about
and manage various resources.

In one application, role-based strategies have been used to
form a security model called Role-Based Access Control
(RBAC). RBAC associates special rules, called “permis-
sions,” with roles; each role is granted only the minimum
permissions necessary for the performance of the functions
associated with that role. Identities are assigned to roles,
giving the users and other entities the permissions necessary
to accomplish job functions. RBAC has been formalized
mathematically by NIST and accepted as a standard by ANSI.
American National Standard 359-2004 is the information
technology industry consensus standard for RBAC, and is
incorporated herein by reference in its entirety.

In a preferred embodiment, a user is defined as an entity
that will act in one or more roles. A user is typically associated
with an internal or external entity that will interact with the
cloud computing system in some respect. A user can have
multiple roles simultaneously. In one embodiment of the sys-
tem, a user’s roles define which API commands that user can
perform.

Although the “user” construct may sometimes represent a
physical human being, there is no limitation that a user must
be aperson. Rather, auser may be a person, system, or service
who interacts with the cloud computing system and is asso-
ciable with a distinct identity. The authn/authz service 700
validates requests and API calls with reference to the declared
user. No particular implementation of the user construct is
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required; users may be locally unique within a defined realm
or globally unique within the cloud computing system. In
most embodiments, a user will be identified using one or more
“IDs.” These user IDs can be numbers, strings of characters,
or compound multi-valued objects. In some embodiments,
this user ID is (or is associated with) a “login”—a sequence of
characters presented to the authn/authz system 700 to identify
the user. In some embodiments, users can also have further
non-security-related metadata associated with them, such as
names, companies, email addresses, locations, etc.

In a preferred embodiment, a resource is defined as some
object to which access is restricted. In various embodiments,
resources can include network or user access to a virtual
machine or virtual device, the ability to use the computational
abilities of a device, access to storage, an amount of storage,
APT access, ability to configure a network, ability to access a
network, network bandwidth, network speed, network
latency, ability to access or set authentication rules, ability to
access or set rules regarding resources, etc. In general, any
item which may be restricted or metered is modeled as a
resource.

In one embodiment, resources may have quotas associated
with them. A quota is a rule limiting the use or access to a
resource. A quota can be placed on a per-project level, a
per-role level, a per-user level, or a per-group level. In one
embodiment, quotas can be applied to the number of volumes
which can be created, the total size of all volumes within a
project or group, the number of instances which can be
launched, both total and per instance type, the number of
processor cores which can be allocated, and publicly acces-
sible IP addresses. Other restrictions are also contemplated as
described herein.

In a preferred embodiment, a project is defined as a flexible
association of users, acting in certain roles, which will define
and access various resources. A project is typically defined by
an administrative user according to varying demands. There
may be templates for certain types of projects, but a project is
a logical grouping created for administrative purposes and
may or may not bear a necessary relation to anything outside
the project. In a preferred embodiment, arbitrary roles can be
defined relating to one or more particular projects only.

In a preferred embodiment, a group is defined as a logical
association of some other defined entity. There may be groups
of users, groups of resources, groups of projects, groups of
quotas, or groups which contain multiple different types of
defined entities. For example, in one embodiment, a group
“development” is defined. The development group may
include a group ofusers with the tag “developers” and a group
of virtual machine resources (“developer machines”). These
may be connected to a developer-only virtual network (“dev-
net”). The development group may have a number of ongoing
development projects, each with an associated “manager”
role. There may be per-user quotas on storage and a group-
wide quota on the total monthly bill associated with all devel-
opment resources.

The applicable set of rules, roles, and quotas is based upon
context. In one embodiment, there are global roles, user-
specific roles, project-specific roles, and group-specific roles.
In one embodiment, a user’s actual permissions in a particular
project are the intersection of the global roles, user-specific
roles, project-specific roles, and group-specific roles associ-
ated with that user, as well as any rules associated with project
or group resources possibly affected by the user. Other
embodiments may also use other grouping or organizational
identifiers, such as domains, realms, locations, and organiza-
tions.
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In a preferred embodiment, a credential is an identifying
token. This token can be either something that is uniquely
known or controlled by the user, such as a password, key,
certificate, token, or other piece of information, or it can be
something associated with the user’s identity, such as voice
prints, iris or retinal scan data, fingerprints, etc. In one
embodiment, unique machine-identifying data can also be
used as a credential, such as IP addresses, MAC addresses,
embedded key, computer chip, or serial number information,
or computationally secure data processing circuits. In one
embodiment, the identity-based credential is unique to the
user being identified. In a second embodiment, credentials are
treated probabilistically, and a number of credentials can be
combined to increase the confidence that the user has been
authenticated correctly.

In a preferred embodiment, authentication is the act of
confirming the identity of a user or the truth of a claim. The
authn/authz service 700 confirms that incoming requests are
being made by the user who claims to be making the call by
validating a set of claims provided by the user. In one embodi-
ment, the claims are initially in the form of a set of credentials
(username & password, or login and API key). After initial
confirmation, The authn/authz service 700 issues a token that
can serve as a credential.

In a preferred embodiment, authorization is the act of con-
firming the capability of a user to perform some action. The
authn/authz service 700 confirms that the user is authorized to
perform the actions corresponding to the user’s incoming
requests. An individual authorization is called a “permis-
sion.” In one embodiment, if a user is not authenticated, a
“default” or “anonymous” profile is used as the default iden-
tity. A token can contain or refer to a set of authorization
permissions.

In a preferred embodiment, a token is a data (such as a
string) that corresponds to an identity. Tokens are generally
cryptographically generated to prevent forging and are asso-
ciated with access controls. Each token has a scope and a
timeframe that describe the resources that can be accessed
using the token.

In a preferred embodiment, an endpoint is a network-ac-
cessible address, usually described by URL or URI, where a
service may be accessed.

These different pieces can be used to collectively authen-
ticate and authorize a user. Although the authn/authz service
will be described in terms of specific embodiments below, the
logical constructs are more important than the particular
implementations, and the representation of any particular part
of'the system may change from embodiment to embodiment.

Turning again to FIG. 7, the authn/authz service 700 is
organized as a group of internal services exposed on one or
many endpoints 702. Many of these services are used in a
combined fashion by the frontend APIs (such as the service
endpoints 112 described relative to FIG. 1). In one embodi-
ment, the authz/authn service 700 immediately authenticates
and authorizes a request arriving to the cloud computing
system and creates and return a token credential that can be
used internally to authorize and authenticate the services
without having to duplicate the original credential checks.
This token may be returned to the user or may be a hidden
internal implementation detail for operational efficiency
within the cloud computing system as a whole. In another
embodiment, the authn/authz service 700 has a service-spe-
cific endpoint within each subsidiary service of the cloud
computing system, such as endpoints 702a, 7025, and 702c¢.
These endpoints can be exposed over HTTP, OAUTH,
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XAUTH, XML-RPC, SOAP, CORBA, LDAP, COM, Ker-
beros, RADIUS, OpenlD, SAML, or other protocols known
in the art.

The authn/authz service 700 has four primary divisions, the
authn provider 710, the authz provider 720, the storage pro-
vider 730, and the credential service 740. The authn provider
710 performs the calculations or comparisons needed to
authenticate a user given the provided credentials. The authz
provider 720 performs the necessary analysis to determine
whether an identified user has the necessary permissions to
perform a requested action. The storage provider 730 pro-
vides access to a durable storage that contains authentication
and authorization rules, tokens, credentials, and other neces-
sary data. The credential service 740 provides new credentials
on demand.

Each of these four divisions presents a unified API for
consumers, regardless of the underlying implementation. In
one or more embodiments, there are various backend services
that actually implement, store, or calculate the data needed to
provide the authentication, authorization, user/credential
storage and generation services exposed by the providers 710,
720, 730, and 740. These backend services may include but
are not limited to a rule engine 750, a disk store 760, an LDAP
database 770, or an RDBMS 780. Although the embodiment
shown in FIG. 7 shows only one backend provider of each
type and an architecture in which all backend providers are
commonly accessible, this is for purposes of illustration only
and should not be considered a limitation.

For example, a first embodiment of the rule engine 750
encompasses multiple rule engines working in parallel or a
single rule engine 750. The rule engine 750 may or may not
have access to one or more disks 760, LDAP stores 770,
RDBMS’s 780. In another embodiment, some of the backend
services may be combined. Looking again at the rule engine
750, one embodiment uses database logic, triggers, and stored
procedures to implement the rule engine 750. Another imple-
mentation uses an RBAC analysis engine associated with an
LDAP datastore like Active Directory or OpenLDAP. A third
embodiment of the rule engine 750 is implemented as
described elsewhere in this document. Other embodiments
may use other implementations as known in the art.

In one embodiment, the disk store 760 is implemented
using structured files on a computer-readable medium. For
example, one embodiment of a disk store 760
comprises /etc/passwd and /etc/grp files. A second embodi-
ment of a disk store 760 is a structured data store, such as a
CSV, XML, SQL.ite or BerkelyDB-formatted and structured
file on a disk. A third embodiment uses an object storage
service. Other embodiments may use other implementations
as known in the art.

In one embodiment, the LDAP store 770 is implemented
using commercially available tree-structured directory such
as Active Directory, Open.LDAP, the Red Hat directory ser-
vice or Novell eDirectory. In another embodiment, the LDAP
store 770 is implemented using a graph database or a key-
value database, a document database, or a tree-structured
filesystem with disk-based storage and attributes. Other
embodiments may use other implementations as known in the
art.

In one embodiment, the RDBMS 780 is implemented
using commercially available relational database such as
MySQL, PostgreSQL, Oracle database server, Microsoft
SQL Server, SQLite, DB2, or other relational databases as
known in the art.

Each of the four main divisions of the authn/authz service
700 can call out to other portions of the service, either using
the API bus 704 or the direct access bus 706. The API bus 704
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is a communications medium, such as a message service or
network connection, that allows one provider to call another
provider’s APl as part of its functionality. For example, in one
embodiment the credential service 740 uses the API bus 704
to retrieve a representation of the permissions associated with
a particular user so that the permissions can be encoded into
a generated token.

The direct access bus 706 is a communications medium,
such as a message service or network connection, which
allows one provider to call out to one or more of the backend
services to provide part or all of its functionality. For example,
in one embodiment the authz provider 720 uses organiza-
tional information stored in the LDAP store 770 to evaluate
whether a particular action is authorized.

The final component shown in FIG. 7 is the service proxy
790. The service proxy 790, either as a singular proxy or via
multiple service proxies 790, transparently connect a remote
implementation of one or more of the providers (710, 720,
730, 740) or services (750, 760, 770, 780) for execution in a
remote location. In various embodiments the service proxy
supports federation, caching, and user-specific business logic
in the authn/authz system 700.

In one embodiment, two services capable of providing
authn/authz service exist, authn/authz system 1 and authn/
authz system 2. Each system has a set of local backend ser-
vices providing authn, authz, storage, and credential access
via the endpoints 702 for a set of users, where the two sets of
users are disjoint. Further, a secure communication channel
exists between the service proxy 790 of each service and the
remote service. In one implementation, “fallback™ logic is
provided for each of the authn provider 710, authz provider
720, and storage provider 730. The fallback logic first looks to
the local implementation for authentication and authorization
of'users and permissions. If the lookup fails, either in authen-
tication or in authorization, or if the information necessary for
calculation of authentication or authorization is not available
to the local storage provider 730, then the service proxy 790
is used to present the same user request to the remote system.
Only if both the local and remote calculation of authentica-
tion, authorization, or storage fails is a rejection returned.

Those of skill in the art will recognize several implications,
extensions or modifications of the embodiment described
above. First, it is preferred for the connection from the service
proxy to go to an endpoint 702 or API bus 704 of a remote
system so as to reduce the coupling between systems, but it is
equally possible to use the service proxy to connect directly to
aremote service implementation. Second, the remote service
implementation does not need to be controlled by the cloud
service provider, and in fact it may be more common to have
a secure connection to a customer-internal authentication and
authorization service so that sensitive authentication and
authorization information can stay inside user-controlled sys-
tems and never be transmitted outside of a protected area.
Third, the embodiment described above is bidirectional, but it
would be equally easy to have a unidirectional federation by
only connecting one service proxy 790 to the remote system
without having the second reciprocal link. Fourth, the creden-
tial service 740 can also be proxied using the service proxy
790, but it may be more efficient in some circumstances to
generate a new temporary credential at the local system so
that the cross-service proxied call does not need to be made
for subsequent accesses.

In a second embodiment, the service proxy 790 is used to
support caching of remote information. This is related to the
federation embodiment described above, except that a copy of
the credentials and necessary information needed to identify
the correct authentication and authorization responses can be
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saved in a local data store for use in subsequent connections.
A “TTL” (time-to-live) value can be imposed on the cached
values so as to force periodic reauthorization, and the con-
nection between the service proxy 790 and the remote system
can be used to revoke particular tokens or credentials for
reasons other than the expiration of time. An advantage of
particular embodiments is that the response to certain API
calls can be cached without revealing the underlying mecha-
nism used to compute the response.

In a third embodiment, the service proxy 790 is used to
implement user-specific business logic via a plugin system.
The service proxy 790 can be used to replace or proxy any
provider or backend service to an arbitrary point, including a
local service implementing user-specific logic. The service
proxy 790 provides a plugin API or RPC API that allows
user-defined authentication, authorization, storage, and cre-
dential services to be used transparently without any change
in the outer API endpoints 702. In one implementation, this is
performed similarly to the federation or caching examples
above, but the “remote” service is actually provided at a local
node running the user-provided plugin.

Other implementations of each of the services are also
anticipated. In the same fashion described above, each pro-
vider or service is configurable to use a backend so that the
authn/authz service 700 can fit a variety of environments and
needs. In one embodiment, the backend for each service is
defined in a configuration file and the proper backend is
loaded at runtime.

Although graph-based, document-based, RDF-based, and
key-value-based databases are not explicitly shown, their use
is explicitly contemplated in the context of various embodi-
ments. In one embodiment, a key-value store backend is
implemented that can support primary key lookups, the most
trivial implementation being an in-memory dictionary
lookup. In a second embodiment, a relational database map-
per can be used to provide many services on top of a tradi-
tional SQL backend, outside of simple RDBMS service. In
third embodiment, PAM (Pluggable Authentication Mod-
ules) are used as a backend via a system’s PAM service. This
provides a one-to-one relationship between Users and Groups
with the root User also having the ‘admin’ role.

In one preferred embodiment, authentication of a user is
performed through public/private encryption, with keys used
to authenticate particular users, or in some cases, particular
resources such as particular machines. A user or machine may
have multiple keypairs associated with different roles,
projects, groups, or permissions. For example, a different key
may be needed for general authentication and for project
access. In one such embodiment, a user is identified within the
system by the possession and use of one or more crypto-
graphickeys, such as an access and secret key. A user’s access
key needs to be included in a request, and the request must be
signed with the secret key. Upon receipt of API requests, the
rules engine verifies the signature and executes commands on
behalf of the user.

Some resources, such as virtual machine images, can be
shared by many users. Accordingly, it can be impractical or
insecure to include private cryptographic information inasso-
ciation with a shared resource. In one embodiment, the sys-
tem supports providing public keys to resources dynamically.
In one exemplary embodiment, a public key, such as an SSH
key, is injected into a VM instance before it is booted. This
allows a user to login to the instances securely, without shar-
ing private key information and compromising security.
Other shared resources that require per-instance authentica-
tion are handled similarly.
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In one embodiment, a rule processor is also used to attach
and evaluate rule-based restrictions on non-user entities
within the system. In this embodiment, a “Cloud Security
Group” (or just “security group”) is a named collection of
access rules that apply to one or more non-user entities.
Typically these will include network access rules, such as
firewall policies, applicable to a resource, but the rules may
apply to any resource, project, or group. For example, in one
embodiment a security group specifies which incoming net-
work traffic should be delivered to all VM instances in the
group, all other incoming traffic being discarded. Users with
the appropriate permissions (as defined by their roles) can
modify rules for a group. New rules are automatically
enforced for all running instances and instances launched
from then on.

When launching VM instances, a project or group admin-
istrator specifies which security groups it wants the VM to
join. If the directive to join the groups has been given by an
administrator with sufficient permissions, newly launched
VMs will become a member of the specified security groups
when they are launched. In one embodiment, an instance is
assigned to a “default” group if no groups are specified. In a
further embodiment, the default group allows all network
traffic from other members of this group and discards traffic
from other IP addresses and groups. The rules associated with
the default group can be modified by users with roles having
the appropriate permissions.

In some embodiments, a security group is similar to a role
for a non-user, extending RBAC to projects, groups, and
resources. For example, one rule in a security group can
stipulate that servers with the “webapp” role must be able to
connect to servers with the “database” role on port 3306. In
some embodiments, an instance can be launched with mem-
bership of multiple security groups—similar to a server with
multiple roles. Security groups are not necessarily limited,
and can be equally expressive as any other type of RBAC
security. In one preferred embodiment, all rules in security
groups are ACCEPT rules, making them easily composible.

In one embodiment, each rule in a security group must
specify the source of packets to be allowed. This can be
specified using CIDR notation (such as 10.22.0.0/16, repre-
senting a private subnet in the 10.22 IP space, or 0.0.0.0/0
representing the entire Internet) or another security group.
The creation of rules with other security groups specified as
sources helps deal with the elastic nature of cloud computing;
instances are impermanent and IP addresses frequently
change. In this embodiment, security groups can be main-
tained dynamically without having to adjust actual IP
addresses.

In one embodiment, the APIs, RBAC-based authentication
system, and various specific roles are used to provide a US
eAuthentication-compatible federated authentication system
to achieve access controls and limits based on traditional
operational roles. In a further embodiment, the implementa-
tion of auditing APIs provides the necessary environment to
receive a certification under FIPS 199 Moderate classification
for a hybrid cloud environment.

Typical implementations of US eAuth authentication sys-
tems are structured as a Federated LDAP user store, back-
ending to a SAML Policy Controller. The SAML Policy
Controller maps access requests or access paths, such as
requests to particular URLs, to a Policy Agent in front of an
eAuth-secured application. In a preferred embodiment, the
application-specific account information is stored either in
extended schema on the LDAP server itself, via the use of a
translucent LDAP proxy, or in an independent datastore
keyed off of the UID provided via SAML assertion.
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As described above, in one embodiment API calls are
secured via access and secret keys, which are used to sign API
calls, along with traditional timestamps to prevent replay
attacks. The APIs can be logically grouped into sets that align
with the following typical roles:

Base User

System Administrator

Developer

Network Administrator

Project Administrator

Group Administrator

Cloud Administrator

Security

End-user/Third-party User

In one currently preferred embodiment, System Adminis-
trators and Developers have the same permissions, Project
and Group Administrators have the same permissions, and
Cloud Administrators and Security have the same permis-
sions. The End-user or Third-party User is optional and exter-
nal, and may not have access to protected resources, including
APIs. Additional granularity of permissions is possible by
separating these roles. In various other embodiments, the
RBAC security system described above is extended with
SAML Token passing. The SAML token is added to the API
calls, and the SAML UID is added to the instance metadata,
providing end-to-end auditability of ownership and respon-
sibility.

In an embodiment using the roles above, APIs can be
grouped according to role.

Any Authenticated User May:

Describe Instances

Describe Images

Describe Volumes

Describe Keypairs

Create Keypair

Delete Keypair

Create, Upload, Delete Buckets and Keys
System Administrators, Developers, Project Administrators,
and Group Administrators May:

Create, Attach, Delete Volume (Block Store)

Launch, Reboot, Terminate Instance

Register/Unregister Machine Image (project-wide)

Request or Review Audit Scans
Project or Group Administrators May:

Add and remove other users

Set roles

Manage groups
Network Administrators May:

Change Machine Image properties (public/private)

Change Firewall Rules

Define Cloud Security Groups

Allocate, Associate, Deassociate Public IP addresses

In this embodiment, Cloud Administrators and Security
personnel would have all permissions. In particular, access to
the audit subsystem would be restricted. Audit queries may
spawn long-running processes, consuming resources. Fur-
ther, detailed system information is a system vulnerability, so
proper restriction of audit resources and results would be
restricted by role.

In an embodiment as described above, APIs are extended
with three additional type declarations, mapping to the “Con-
fidentiality, Integrity, Availability” (“C.I.A.”) classifications
of FIPS 199. These additional parameters would also apply to
creation of block storage volumes and creation of object
storage “buckets.” C.I.A. classifications on a bucket would be
inherited by the keys within the bucket. Establishing declara-
tive semantics for individual API calls allows the cloud envi-
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ronment to seamlessly proxy API calls to external, third-party
vendors when the requested C.I.A. levels match.

In one embodiment, a hybrid or multi-vendor cloud uses
the networking architecture described relative to FIG. 4 and
the RBAC controls to manage and secure inter-cluster net-
working. In this way the hybrid cloud environment provides
dedicated, potentially co-located physical hardware with a
network interconnect to the project or users’ cloud virtual
network. User-specific security policies are implemented as
plugins on the network without necessarily disclosing the
underlying implementation or specific business rules imple-
mented by the plugin.

In one embodiment, the interconnect is a bridged VPN
connection. In one embodiment, there is a VPN server at each
side of the interconnect with a unique shared certificate. A
security group is created specifying the access at each end of
the bridged connection. In a second embodiment, the inter-
connect VPN implements audit controls so that the connec-
tions between each side of the bridged connection can be
queried and controlled. Network discovery protocols (ARP,
CDP) can be used to provide information directly, and exist-
ing protocols (SNMP location data, DNS LOC records) over-
loaded to provide audit information.

Object Storage Service

Referring now to FIG. 8, a diagram showing the logical
structure of an object storage service is shown at reference
800. The structure connects a user 802 through a proxy 804,
where the proxy 804 provides an API endpoint for interacting
with the storage service 800. The proxy 804 is connected to
one or more rings 806 such as an object ring 8064, a container
ring 8065, and an account ring 806c¢, described in further
detail below, that are connected to an object service 808,
container service 810, and an account service 812, respec-
tively, described in further detail below. In other embodi-
ments, there are other types of objects managed by rings, such
as a structured data ring, a graph storage ring, or another type
of ring (not pictured). In such embodiments, each ring would
be connected to an appropriate service, such as a structured
data service, a graph service, or another service (not pic-
tured).

In one embodiment, these rings and services are imple-
mented as services integrated with or running on top of an
information processing system 210 as described relative to
FIG. 2. These could be running alone, or configured to host
one or more virtual machines; the services and rings can be
implemented on “bare metal,” or within one or more of the
virtual machines (logical containers and operating environ-
ments). The services and functionalities described relative to
the object storage service may be centralized onto a smaller
number of physical devices or may be expanded out to a large
number of independent physical machines, including
machines in different zones. For ease of explanation, two
groupings are shown, wherein a storage management server
816 centralizes the proxy 804 and the rings 806, and a storage
pool server 818 centralizes the object service 808, the con-
tainer service, 810, the account service 812, and the storage
pools 814. This grouping is for convenience in explanation
only, however, and is not intended to be limiting. Further,
each of these groupings may be logically present in a particu-
lar embodiment but may be implemented using a plurality of
physical devices in a configuration that is different from the
logical configuration presented.

In one embodiment, each storage pool 814 is provided by a
separate storage server 818 or includes a virtual server that is
included in a portion of one of the storage servers 818 or
across a plurality of the storage servers 818. For example, the
storage servers 818 may be physically located in one or more

40

45

30

data centers, and the resources of the storage servers 818 may
be virtualized according to the requirements of a plurality of
users (e.g., the user 802) such that the plurality of storage
pools 814 are provided to the plurality of users in order to
store files and/or data objects. Thus, resources for a particular
virtual server or storage pool may span across multiple stor-
age servers 818.

Referring now to FIG. 9, a multi-zone object storage ser-
vice is shown at reference 840. The multi-zone object storage
service 840 encompasses multiple zones 850a-850%. These
zones may be included in separate regions, such as the exem-
plary regions 852a and 8525. Each zone may also be under the
control of a separate organization. Each zone includes a
object storage service, such as the object storage service
described relative to FI1G. 8, possibly including in each object
storage service a proxy 854a-n, one or more rings 856a-n,
object, container, account, or other services 858a-n, and a
storage pool 860a-%. In one embodiment, the user 802 inter-
acts with each zone independently, addressing any requests
directly to the proxies 854a-#. In a second embodiment of the
multi-zone object storage service 840, there is an additional
multi-zone proxy 862 or multi-zone ring 864. The multi-zone
proxy 862 is used to provide a single entry point to the zones
850a-n, and the multi-zone ring 864 is used to balance
requests across the zones 850a-7. An embodiment may use
either a multi-zone proxy 862, or a multi-zone ring 864, or
both, or neither. In an embodiment in which a multi-zone
proxy 862 or a multi-zone ring 864 is used, the individual
zones 850a-n can optionally forego the use of the zone-
specific proxy 854a-n or zone-specific ring 856a-n.

Referring now to FIG. 10, a particular user 802 interacts
with the storage service 800 via the API to store and receive
data objects. User 802 may create a plurality of containers
1002 in the user account 1000 and store a plurality of data
objects 1004 in each of the containers 1002 for retrieval. In
the discussion below, a user account is referred to as an
“account,” a container is referred to as a “container,” and a
data object is referred to as an “object” for clarity of discus-
sion. One of skill in the art will recognize that the terms
“account,” “container” and “object” are generic forms of data
naming that are used to direct the object storage service 800 to
a specific data object. When other types of rings and services
are used, an appropriate name may be substituted. For clarity,
discussion of alternative rings and services will be limited to
the “account,” “container” and “object” rings and services.
The account as shown in FIG. 10, as well as other rings and
services, are consistent whether or not they are deployed on a
logical structure within a single cluster, such as the structure
illustrated in FIG. 10, or are arrayed across a multi-zone
system, such as the structure illustrated in FIG. 9. When
reference is made to the proxy 804, the rings 806, the services
808, 810, or 812, or the storage pools 814, equivalent struc-
tures are also contemplated within each zone 850a-» (specifi-
cally the proxies 854a-n, the rings 856a-n, the object/con-
tainer services 858a-n, and the storage pools 860a-n).
Similarly, equivalent structures to the proxy 804 and the rings
806 are contemplated relative to the multi-zone proxy 862
and the multi-cluster ring 864.

The components of the exemplary object storage service
800 and some of their functions will now be described in
detail relative to various embodiments.

The Rings 806

As discussed above, the rings 806 are implemented in a
tailored electrical circuit or as software instructions to be used
in conjunction with a processor to create a hardware-software
combination that implements the specific functionality
described herein. To the extent that software is used to imple-
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ment the rings, it may include software that is stored on a
computer-readable medium location in the storage manage-
ment server 816 and/or the storage servers 818. Referring
back to FIG. 2, the rings 806 include semiconductor circuits
and/or computer-executable instructions that, when executed
by a processor, provide subsystems of the object storage
service 800 that provide a mapping between the entities
stored in the object storage service 800 and the locations of
those entities in the storage pools 814. In the illustrated
embodiment, the object storage service 800 includes a sepa-
rate object ring 8064, container ring 8065, and account ring
806c¢, and when components of the object storage service 800
need to perform any operation on an object, container, or
account, those components interact with the object ring 8064,
container ring 8065, and account ring 806c, respectively, to
determine the location of that stored entity in the storage
pools 814. However, one of skill in the art will recognize that
different ring structures may be provided (e.g., a single ring
for the objects, containers, and accounts, more than one ring
for each of the objects, containers, and account, etc.) without
departing from the scope of the present disclosure. The rings
806 maintain the availability and safety of data in the object
storage service 800 through the use of zones, partitions, rep-
licas, and the storage pools 814, as described below.

In one embodiment, availability zones are defined across
one or more of the storage pools 814 that are subject to a
correlated loss of access or data as a result of a particular
event. In addition, zones can be used for identification and
management of other aspects of the system, such as the use of
specific storage technology. One of skill in the art will recog-
nize that the examples of zones provided above are not lim-
iting, and a variety of zones known in the art will fall into the
scope of the present disclosure.

Logically, a partition is an abstract storage bucket. As dis-
cussed in further detail below, the object storage service 800
maps each partition to a plurality of storage pools 814 that are
in different zones, and stores data using those partitions. The
mapping of a given partition to a plurality of storage pools 814
creates a plurality of partition replicas of that partition (e.g.,
equal to the number of storage pools 814 the partition is
mapped to.) For example, when a given partition is mapped to
3 storage pools 814 that are in different zones, 3 partition
replicas of that partition are created.

The object ring 8064 for the management of objects will be
described in detail below. However, one of skill in the art will
recognize how the discussion may be applied to the container
ring 8065, the account ring 806¢, and/or a ring for any other
stored entity, without departing from the scope of the present
disclosure.

In various replicated, network-based object storage ser-
vices, an object from a user is received by a proxy. To deter-
mine where the object should be stored, some attribute of the
object or the object data itself is hashed. If necessary, some
attribute of the object is modified so that three different results
are returned from the hashing function. The object is then
replicated and stored in the storage pool corresponding to the
number returned by the hash function.

Under typical circumstances, a consistent hashing function
is used as the hash function. The use of the consistent hashing
function ensures that there will be minimal changes to the
assigned storage pools given a change in membership due to
adding or removing new storage pools.

Although the consistent hashing function results in mini-
mal changes to the storage location, sometimes the assign-
ments made by the consistent hashing function or the rear-
rangements needed due to a change in membership may have
undesirable storage characteristics. For example, such meth-
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ods have been found to result in multiple object replicas for
the same object being stored in one or more storage pools that
are in the same zone. As discussed above, this is undesirable
because then multiple (and possibly all) object replicas for the
same object are subject to being lost as a result of a particular
event. Alternatively, rebalancing the replicas due to a change
in membership has been found to require the movement to
two of the replicas 4% of the time, and the movement of all
three replicas 1% of the time. It is desirable to never have to
move more than one replica at a time.

In one embodiment, the object storage service 800 solves
the problem of multiple object replicas for the same object
being stored in storage pools that are in the same zone through
the use of the rings 806. Referring now to FIG. 11, a method
1100 for storing stored entities is illustrated. At block 1102,
an object us received by a user. In one embodiment, an object
is received from the user 802 by the proxy 804. The method
1100 then proceeds to block 1104 where a partition identifi-
cation is generated. In one embodiment, a consistent hash
function is applied to the object received in block 1102, and
the hash function returns a partition identification that corre-
sponds to a partition. The method 1100 then proceeds to block
1106 where the partition associated with the partition identi-
fication is mapped to storage pools that are in different zones.
This mapping function is constrained so that the physical
location of the storage pools is required to have one or more
desirable properties, such as having each partition replica in a
separate zone.

There are various embodiments of the constrained map-
ping function. In one embodiment, the constrained mapping
function is the output of a constraint satisfaction solver, in
which the desired storage characteristics (such as the require-
ment that each replica of a partition be in a different avail-
ability zone) are inputs to the solving function. The solver
then uses one or more search methodologies within the solu-
tion space to find a storage layout that maps partitions to
storage pools in a desirable manner.

In a second embodiment, a constrained mapping function
is applied to portions of the partition identification (e.g., the
portions of the partition identification that the constrained
mapping function is applied to) may be bits of the output of
the original hashing function is applied to the object. For
example, the number of bits to which the constrained map-
ping function is applied may be known as the partition power,
and 2 to the partition power may indicate the partition count.
The constrained mapping function is designed to return a
storage pool location for each portion of the partition identi-
fication to which it is applied, and the storage pool locations
returned for a given partition identification will each corre-
spond to storage pools 814 in different zones. These storage
pool locations are then associated with the partition identifi-
cation. Thus, the partition corresponding to the partition iden-
tification is replicated multiple times in the object storage
service 800 (i.e., a partition replica is included in each storage
pool corresponding to the storage pool locations determined
from the constrained mapping function.) The method 1100
then proceeds to block 1108 where the object is stored accord-
ing to the partition. The object received by the user 802 in
block 1102 of the method 1100 may then be stored according
to the partition corresponding to the partition identification,
which results in multiple object replicas for the object being
stored in storage pools that are in different zones in the object
storage service 800. In another embodiment, the constrained
mapping function is used to determined storage pool loca-
tions that are in different zones for each partition prior to the
object being received by the user 802, discussed in further
detail below.
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The output of the constrained mapping function signifies a
particular storage pool where a replica of the partition should
be stored. An example of this output is as follows: When an
object is received from the user 802 at block 1102 of the
method 1100, and at block 1104 of the method 1100, a hash
function is applied to the object. In one exemplary embodi-
ment, the user 802 provides data including an account/con-
tainer/object name to the proxy 804, and a hash function is
applied to the account/container/object name as follows:
Hash function (account/container/object name)

==123456789
Where 123456789 is the partition identification that is
returned by the hash function. At block 1106 of the method
1100, the partition mapping number may then be divided into
3 parts (e.g., the first three digits, the second three digits, and
the third three digits of the partition identification,) and the
constrained mapping function is applied to each of those
parts:

Constrained mapping function (123)==storage pool location

(zone 1)

Constrained mapping function (456)==storage pool location

(zone 7)

Constrained mapping function (789)==storage pool location

(zone 3)

As discussed above, the constrained mapping function is
designed to return the storage pool location (zone 1), storage
poollocation (zone 7), and storage pool location (zone 3) that
correspond to storage pools that are in different zones (e.g.,
zones 1, 3, and 7). The storage pools locations are then asso-
ciated with the partition identification:

Partition identification: (storage pool location (zone 1), stor-
age pool location (zone 7), storage pool location (zone 3)
Thus, the partition corresponding to the partition identifica-
tion is replicated across storage pools that are in different
zones (here, zones 1, 3, and 7.) At block 1108 of the method
1100, the object received from the user 802 is then stored,
using the partition corresponding to the partition identifica-
tion, in each of the storage pools corresponding to the storage
pool locations returned by the application of the constrained
mapping function to portions of the partition identification.
Thus, 3 replicas of the object received from the user 802 are
stored in the object storage service 800 in storage pools that
are located in different zones (zones 1, 3, and 7.) In one
embodiment, each of the storage pool locations are IP
addresses, i.e., when each of the storage pools are separate
storage servers. In one embodiment, the constrained mapping
function is a hash function. However, one of skill in the art
will recognize that a variety of functions may be used to
ensure that each partition is mapped to storage pools that are
in different zones without departing from the scope of the
present disclosure.

In another embodiment, the constrained mapping function
is applied to the object storage service 800 before the objectis
received by the user 802 at block 1102 in order to accomplish
the mapping of the partitions to storage pools described above
with reference to block 1106 of the method 1100. For
example, the total number of partitions and the total number
of storage servers/storage pools in the object storage service
800 may (and typically will) be known. With that knowledge,
the constrained mapping function is used to map each parti-
tion in the object storage service 800 to a plurality of storage
pools that are in different zones, and that information is stored
in a constrained mapping database. For example, a con-
strained mapping database may include partitions mapped to
storage pools such as:
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Partition 1: storage pool location (zone 1), storage pool loca-

tion (zone 2), storage pool location (zone 3)

Partition 2: storage pool location (zone 4), storage pool loca-

tion (zone 5), storage pool location (zone 6)

Partition 3: storage pool location (zone 7), storage pool loca-

tion (zone 8), storage pool location (zone 9)

In one embodiment, the output of the constrained mapping
function can be saved for optimized lookup. For example, the
saved output may be embodied in a file provided to each of the
storage pools 814, or stored in a database that is available for
the appropriate systems to query. If the saved output is con-
tained within a file, the storage pools 814 may then periodi-
cally check the modification time of this file and reload their
in-memory copies of the ring structure as needed.

Thus, when an object is received from a user 802 at block
1102, the hash function is applied to that object to get the
partition identification (e.g., partition 1, 2, or 3 in the example
above) at block 1104, and then at block 1106, the partition
identification may then be used with the constrained mapping
database to determine the corresponding partition and its
associated storage pool locations. This embodiment allows
the processing necessary to map partitions to multiple storage
pools in different zones to be conducted before objects are
received from users so that such processing does not have to
be conducted each time an object is received from a user.

For example, referring now to FIG. 12, a method for build-
ing a ring 806 is illustrated. At block 1202, an ideal number of
partitions for each storage pool in the object storage service is
determined. In one embodiment, the number of partitions that
should ideally be assigned to each storage pool 814 is calcu-
lated based the weight (e.g., storage capacity) of each storage
pool 814. For example, if the partition power is 20, the ring
806 will have 1,048,576 (2°°) partitions. If there are 1,000
storage pools 814 of equal weight, each storage pool 814 will
ideally be assigned 1,048.576 partitions. This may be referred
to as an ideal partition count, and in the example, each storage
pool 814 starts off empty with a 1,048.576 ideal partition
count. The method 1200 then proceeds to block 1204 where
the storage pools are placed in a sorting order. In one embodi-
ment, the storage pools 814 are placed in a sorting order based
on their ideal partition count (e.g., highest to lowest), and this
sorting order is maintained throughout the method 1200 as
partitions are assigned storage pools 814. The method 1200
then proceeds to block 1206 where partitions are assigned to
storage pools based on their sorting order but with a zone
restriction. In one embodiment, the partitions are assigned to
the storage pool 814 with the highest ideal partition count, but
subject to the restriction that the storage pool 814 to which a
partition is being assigned is not in the same zone as any other
storage pool 814 that includes a partition replica for that same
partition. The method 1200 then proceeds to block 1208
where the sorting order of the storage pools is adjusted. In one
embodiment, once a partition is assigned to a storage pool
814, that storage pool 814 will have its ideal partition count
decremented and thus that storage pool 814 is moved to a
lower position in the sorting order, and the method 1200 then
returns to block 1206 to continue to assign partitions to stor-
age pools based on their sorting order but with the zone
restriction. In such a manner, each partition is assigned mul-
tiple storage pools 814 in different zones, and thus objects
received from users may have multiple object replicas stored
in storage pools in different zones simply by associating those
objects with the partitions.

As mentioned above, another problem relates to the rebal-
ancing of object replicas stored in the object storage service
due to changing membership (i.e., adding or subtracting stor-
age servers or storage pools from the object storage service.)
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Such methods have been found to require the moving of
multiple object replicas of the same object in response to a
membership change, which is undesirable.

In one embodiment, the mapping of partitions to multiple
storage pools in different zones in the object storage service
800 described above solves these problems. The use of the
constrained mapping function to ensure that each partition is
mapped to storage pools in different zones ensures that object
replicas for the same object are never located in storage pools
814 that are in the same zone (i.e., because any given object
received from auser is stored in a partition that is replicated in
storage pools that are in different zones.) For example, with
each storage server 816 defined as a separate zone, the addi-
tion or subtraction of a given storage server 816 from the
object storage service 800 thus can only effect one partition
replica, and hence one object replica of a given object (i.e.,
because only one of the partition replica will ever be located
on a storage server that is defined as a separate zone.) In
similar fashion, the rebalancing associated with changing the
zone membership can be accomplished without affecting
more than one replica because each zone is guaranteed to only
contain one replica of a given partition.

Periodically, partitions may need to be reassigned to dif-
ferent storage pools 814, and the reassignment of partitions
will result in the building of a new ring from an old ring. Such
an event may occur due to the removal and/or addition of a
storage pool 814 from the object storage service 800 (e.g., a
membership change.) Referring now to FIG. 13, a method
1300 for reassigning partitions in response to the removal of
a storage pool is illustrated. The method 1300 begins at block
1302 where the ideal number of partitions for each storage
pool is recalculated. In one embodiment, the ideal partition
count for the storage pools 814 remaining in the object stor-
age service 800 (subsequent to the removal of a storage pool)
is recalculated. The method 1300 then proceeds to block 1304
where the storage pools are placed in a sorting order as
described above with reference to block 504 of the method
500. The method then proceeds to block 1306 where parti-
tions to be reassigned are grouped. In one embodiment, a
partition list for the partitions to be reassigned is created. For
example, any storage pools 814 that have been removed from
the filesystem 800 may have all their assigned partitions
unassigned and added to the partition list, and any storage
pools 814 that have more partitions than their ideal partition
count may have random partitions unassigned from them and
added to the partition list (i.e., such that those storage pools
have a number of partitions that is within a predetermined
amount of their ideal partition count.) The partitions on the
partition list may then be reassigned to the storage pool 814 in
blocks 1308 and 610 of the method 1300 substantially as
discussed above with reference to blocks 506 and 508 of the
method 500. In one embodiment, at block 1308 of the method
1300, whenever a partition is reassigned to a storage pool 814,
the time of the reassignment is recorded. Reassignment times
may be used when gathering partitions to reassign to storage
pools 814, such that no partition replica for a given partition
is moved twice in a predetermined amount of time. However,
such reassignment restrictions based on reassignment times
may be ignored for partition replicas on storage pools 814 that
have been removed from the object storage service 800, as
removing a storage pool 814 only happens upon storage pool
814/storage server 816 failure and thus requires the reassign-
ment of the partitions.

In one embodiment, the method 1300 is conducted peri-
odically to help balance the amount of data stored by storage
pools 814 in the object storage service 800. For example, the
partition reassignment method 1300 discussed above may
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repeated until each storage pool 814 is within a predeter-
mined threshold of a predetermined storage capacity (e.g.,
within 1% of 130% storage capacity for that storage pool) or
when it is determined that partition reassignment will not
improve the balance of data stored by the object storage
service 800 by more than a predetermined amount. For
example, if a first storage server 816 includes 2 TB of storage,
a second storage server 816 includes 4 TB of storage, and a
third storage server 816 includes 6 TB of storage, data bal-
ancing may be conducted to ensure that each of the storage
servers 818 holds the same percentage of'its storage capacity
(i.e., the first storage server 816 holds 0.66 TB of data, the
second storage server 816 holds 1.33 TB of data, and the third
storage server 816 holds 2 TB of data such that each of the
storage servers 818 is at 33% of'its storage capacity.) Weights
may be applied to storage servers 818 to balance the distri-
bution of data on the storage servers 818 in the object storage
service 800 to account for different storage capacities.

Those of skill in the art will recognize that the constrained
mapping within the rings 806 are modifiable to deal with
more than issues of availability. Even though the embodiment
above has been described in terms of availability zones, any
type of zone can be used for the mapping from partition to
storage device.

In some implementations the constrained mapping is
extensible via a plugin mechanism. The constrained mapping
function is a rule-based hash, and so it can be extended
similarly to other rule-based plugin mechanisms described
herein. In one embodiment, the ring 806 has an API by which
mapping rules can be set by user 802. In a second embodi-
ment, a series of rules can be provided and loaded by the ring
806. This loadable ruleset can be implemented using a
dynamically loadable or runnable program that has a series of
expected inputs and provides its information on a defined
series of outputs. In one embodiment these are “stdin” and
“stdout.” In a second embodiment, these are provided as
function calls within a program module. When set of parti-
tions is provided to the plugin, the constrained mapping func-
tion logically associates it with a particular resource and
assigns the virtual partition to the applicable physical
resource. When a request arrives addressed to that resource,
the tenant-defined rules and filters are applied to the request
and the appropriate object is uploaded, downloaded, edited,
or redirected accordingly. In a further embodiment, the API
provided to the user 802 is sufficient to for the user to direct
the creation of the ring structure via interaction with a remote,
user-controlled entity on the network.

There are two levels at which the user can direct the allo-
cation of underlying resources via the plugin mechanism. At
a first, high level, the user can present weights, correlations,
or affinities between different groups of resources so that an
underlying cloud-provider-specific ring generation function
can take those into account. In a second embodiment, the user
can have direct control over the allocation of storage
resources and those can be mapped onto available physical
resources provided by the cloud provider. Plugging into the
constraint mapping portion of the ring generation function is
sufficient for both levels of control, but it is anticipated that
different cloud providers will favor or provide one level of
control over another.

Object Service 808

As discussed above, the object service 808 is implemented
in a tailored electrical circuit or as software instructions to be
used in conjunction with a processor to create a hardware-
software combination that implements the specific function-
ality described herein. To the extent that one embodiment
includes computer-executable instructions, those instructions
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may include software that is stored on a computer-readable
medium located in the storage management server 816 and/or
the storage servers 818. The object service 808 may include
instructions that, when executed by a processor, provide
object storage and objection manipulation functionality such
that the object service 808 is operable to, for example, store,
retrieve and delete stored objects in the storage pools 814. In
one embodiment, an object service 808 is provided for each
storage pool that holds object data. For example, an object
service 808 may be included on a server that further includes
one or more storage drives that provide a storage pool for
objects. In one embodiment, the objects are stored as binary
files with metadata stored as extended attributes of the file in
the filesystem used by the object storage service. In such an
embodiment, the object service 808 will uses the extended
attributes of the filesystem to manage the metadata. In a
second embodiment, the metadata is stored in a machine-
readable format next to the data itself. For example, the meta-
data for a file is stored in a text file or single file database.

In one embodiment, subsequent processing based on file
metadata is also pluggable by the end user. For example, one
embodiment stores different sets of files and associates them
with the same URL. An ordinary operation to read or modify
the object could also have a “processor” function associated
with it that allows for user-directed modification or logging of
the request.

In one embodiment, objects are stored by the object service
808 using a path derived by applying a hash function to the
name of the object along with a timestamp. For example, an
incoming object for a user account to be written to a container
will have a hash applied to its account/container/object name
and the path generated for the object is:
/objects/<partition>/<storage pool
objectname_hash.15673.data
where “objects” indicate that the object data is stored in an
object storage pool 814, <partition> is the partition identifi-
cation that maps the object to a partition, <storage pool loca-
tion> is the storage pool location that maps the partition
replica to a storage pool 814 in a different zone than its related
partition replicas, objectname_hash is the hash of the
account/container/object name, and 15672 is the timestamp.

When there is a request for an object, the object storage
service 800 will find all the object replicas in the object
storage service 800 that include the objectname_hash and
return the object data that has the most recent timestamp
value. Special care is needed to record updates that should be
persisted as the new canonical value. For example, when an
object replica is deleted, a modification sentinel (e.g., a O byte
“tombstone” file or “.ts” file) is written to the storage pool 814
where the deleted object replica was located and that includes
the same objectname_hash as the deleted object replica (i.e.,
/objectname_hash.15784.1s,) and that tombstone file stays in
the object storage service 800 for a predetermined amount of
time (e.g., 7 days.) During object replication, discussed in
further detail below, when the object storage service 800
encounters a tombstone file, the object storage service 800
checks whether the tombstone file has been in the system for
7 days. If not, the object storage service 800 searches for and
deletes any object replicas that it finds related to that tomb-
stone file (e.g., replicas that same objectname_hash as the
tombstone file) to ensure that objects that were meant to be
deleted from the object storage service 800 are removed and
older versions of object replicas of a given object do not
appear in the object storage service 800 due to, for example,
the temporary failure of a storage server 816 or storage pool
814 that might have prevented the deletion of that object
replica previously. If the object storage service 800 deter-
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mines that a tombstone file has been in the object storage
service 800 for longer than the predetermined time, that
tombstone file is deleted.

The mechanism used for recording file deletion is also used
to record other types of updates. For example, a “purge”
marker indicates that the system should overwrite all copies
of the object and set the space to free; a “version” marker
indicates that the system should create a copy and mark the
copy with a version number; and a “ttl” (time-to-live) marker
indicates that the system should check an authoritative source
for updates after the expiry of a set time period. Other types of
out-of-band changes to the file are also contemplated.

Container Service 810

As discussed above, the container service 810 is imple-
mented in a tailored electrical circuit or as software instruc-
tions to be used in conjunction with a processor to create a
hardware-software combination that implements the specific
functionality described herein. To the extent that one embodi-
ment includes computer-executable instructions, those
instructions may include software that is stored on a com-
puter-readable medium located in the storage management
server 816 and/or the storage servers 818. The container
service 810 may include instructions that, when executed by
a processor, provide container storage and container manipu-
lation functionality such that the container service 810 is
operable to store, retrieve and delete stored containers in the
storage pools 814. In one embodiment, a container service
810 is provided for each storage pool that holds container
data. For example, a container service 810 may be included
on a server that further includes one or more storage drives
that provide a storage pool for containers, and the container
service 810 may include the names of containers and objects
in those containers. Thus, in one embodiment, the container
service 810 handles the listing of containers, and does not
hold the location where the objects are stored (e.g., the stor-
age pool where a given object replica resides), but rather the
locations of containers that hold the objects. The listings for
the container locations may be stored as database files, and
those listings may be replicated across the storage pools 814
in a manner that is similar to the replication of objects (e.g.,
through their association with partitions) as discussed above.
Container storage statistics for the container service(s) 810
may be tracked by the object storage service 800 and may
include total number of objects stored by one or more con-
tainers, the total storage provided by any given container,
and/or a variety of other statistics known in the art.

Account Service 812

As discussed above, the account service 812 is imple-
mented in a tailored electrical circuit or as software instruc-
tions to be used in conjunction with a processor to create a
hardware-software combination that implements the specific
functionality described herein. To the extent that one embodi-
ment includes computer-executable instructions, those
instructions may include software that is stored on a com-
puter-readable medium located in the storage management
server 816 and/or the storage servers 818. The account service
812 may include instructions that, when executed by a pro-
cessor, provide account storage and account manipulation
functionality such that the account service 812 is operable to
store, retrieve and delete stored accounts in the storage pools
814. In one embodiment, an account service 812 is provided
for each storage pool that holds account data. For example, an
account service 812 may be implemented by a server that
includes storage drives that provide a storage pool for
accounts, and the account service 812 may include the names
of accounts and containers in those accounts. Thus, the
account service 812 is very similar to the container service
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810, discussed above, with the exception that account storage
812 handles the listings of accounts.

Other Services

As discussed above, other types of services may be imple-
mented in similar fashion to the object, container, and account
services described above. For example, one implementation
includes an authorization service. The authorization service
may include instructions that, when executed by a processor,
handle the storage and manipulation of authorization meta-
data so that the authorization service is operable to store,
retrieve, delete, and query stored credentials from in the stor-
age pools 814. In one embodiment, an authorization service
provides an ACL-based authorization. In a second embodi-
ment, the authorization service provides posix-compatible
authorization. In a third embodiment, the authorization ser-
vice provides tree or graph-based authorization, such as
would be provided with an LDAP-based authorization ser-
vice.

A second implementation includes a structured data ser-
vice. The structured data service may include instructions
that, when executed by a processor, provide the storage and
manipulation of structured data such that the structured data
service is operable to store, retrieve, delete, and query tabular,
graph, ortree-based data from in the storage pools 814. In one
embodiment, a structured data service provides a JSON-
based output. In a second embodiment, the structured data
service provides XML-based output. In a third embodiment,
the structured data service provides HTML output.

Proxy 804

The proxy 804 is implemented in a tailored electrical cir-
cuit or as software instructions to be used in conjunction with
a processor to create a hardware-software combination that
implements the specific functionality described herein. The
proxy 804 is responsible for tying together the object storage
service 800. For each request received from a user, the proxy
804 determines the location of the account, container, or
object in the appropriate ring 806 (e.g., the object ring 806a,
the container ring 8065, or the account ring 806c¢,) and routes
the request accordingly. A public Application Programming
Interface (API) may be exposed to users through the proxy
804. A large number of failures may be handled by the proxy
804. For example, if a storage server 816 and/or storage pool
814 is unavailable for an object PUT, the proxy 804 may use
the rings 806 to determine an appropriate storage server 816
and/or storage pool 814 for that object and route the object
there instead.

In another embodiment, there are multiple proxies associ-
ated with an object storage service. The existence of multiple
proxies may be ascertainable from outside the object storage
service, or it may be transparent. Different proxies may be
used for different purposes. For example, in one embodiment
different proxies are used for different types of files. In
another embodiment, different proxies are used for different
types of requests. In a third embodiment, an appropriate
proxy is chosen to minimize latency, geographic, or network
distance between the proxy and the system making the
request.

FIG. 14 is a functional block diagram of a virtual machine
(VM) image service 1400 according to various aspects of the
current disclosure. Generally, the VM image service 1400 is
an laaS-style cloud computing system for registering, storing,
and retrieving virtual machine images and associated meta-
data. In a preferred embodiment, the VM image service 1400
is deployed as a service resource 130 in the cloud computing
system 110 (FIG. 1). The service 1400 presents to clients of
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the cloud computing system 110 an endpoint from which the
clients may store, lookup, and retrieve virtual machine
images on demand.

As shown in the illustrated embodiment of FI1G. 14, the VM
image service 1400 comprises a component-based architec-
ture that includes an API server 1402, an image store 1404,
and a registry server 1406. The API server 1402 is a commu-
nication hub that routes VM image requests and data between
clients 1408a-» and the image store 1404 and registry server
1406. The image store 1404 is an autonomous and extensible
storage resource that stores VM images managed by the ser-
vice 1400, and the registry server 1406 is a componentized
service that stores metadata associated with the managed VM
images. In the illustrated embodiment, the API server 1402
includes an “external” API endpoint 1410 through which the
clients 1408a-n may programmatically access VM images
managed by the service 1400. In that regard, the API endpoint
1410 exposes both metadata about managed VM images and
the image data itself to requesting clients. In one embodi-
ment, the API endpoint 1410 is implemented with an RPC-
style system, such as CORBA, DCE/COM, SOAP, or XML-
RPC, and adheres to the calling structure and conventions
defined by these respective standards. In another embodi-
ment, the external API endpoint 1410 is a basic HTTP web
service adhering to a representational state transfer (REST)
style and may be identifiable via a URL. Specific functional-
ity of the API endpoint 1410 will be described in greater detail
below.

The API server 1402 may be implemented in software or in
a tailored electrical circuit or as software instructions to be
used in conjunction with a processor to create a hardware-
software combination that implements the specific function-
ality described herein. To the extent that software is used to
implement the API server 1402, it may include software that
is stored on a non-transitory computer-readable medium in an
information processing system, such as the information pro-
cessing system 210 of FIG. 2.

As mentioned above, the VM image service 1400 stores
VM images in the image store 1404. In the illustrated embodi-
ment, the image store 1404 is any local or remote storage
resource that is programmatically accessible by an “internal”
API endpoint within the API server 1402. In one embodiment,
the image store 1404 may simply be a file system storage
14124 that is physically associated with the API server 1402.
In such an embodiment, the API server 1402 includes a file
system API endpoint 1414a that communicates natively with
the file system storage 1412a. The file system API endpoint
14144 conforms to a standardized storage API for reading,
writing, and deleting VM image data. Thus, when a client
1408 requests a VM image that is stored in the file system
storage 1412a, the API server 1402 makes an internal API call
to the file system API endpoint 1414a, which, in turn, sends a
read command to the file system storage. In other embodi-
ments, the image store 1404 may be implemented with an
outside cloud storage 14125, object storage service storage
1412¢, and/or HTTP storage 1412 that are respectively asso-
ciated with an outside cloud service endpoint 14145, object
storage service endpoint 1414¢, and HTTP endpoint 1414n
on the API server 1402. In one embodiment, the HTTP stor-
age 1412» may comprise a URL that points to a virtual
machine image hosted somewhere on the Internet, and thus
may be read-only. It is understood that any number of addi-
tional storage resources, such as Sheepdog, a RADOS block
device (RBD), a storage area network (SAN), and any other
programmatically accessible storage solutions, may be pro-
visioned as the image store 1404. Further, in some embodi-
ments, multiple storage resources may be simultaneously
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available as image stores within service 1400 such that the
API server 1402 may select a specific storage option based on
the size, availability requirements, etc of a VM image.
Accordingly, the image store 1404 provides the image service
1400 with redundant, scalable, and/or distributed storage for
VM images.

Additionally, in some embodiments, the API server 1402
may include a local image cache that temporarily stores VM
image data. In such a scenario, ifa client requests a VM image
that is held in the image cache, the API server can distribute
the VM image to the client without having to retrieve the
image from the image store 1404. Locally caching VM
images on the API server not only decreases response time but
it also enhances the scalability of the VM image service 1400.
For example, in one embodiment, the image service 1400
may include a plurality of API servers, where each may cache
the same VM image and simultaneously distribute portions of
the image to a client.

The registry server 1406 stores and publishes VM image
metadata corresponding to VM images stored by the system
1400 in the image store 1404. In one embodiment, each VM
image managed by the service 1400 includes at least the
following metadata properties stored in the registry server
1406: UUID, name, status of the image, disk format, con-
tainer format, size, public availability, and user-defined prop-
erties. Additional and/or different metadata may be associ-
ated with VM images in alternative embodiments. The
registry server 1406 includes a registry database 1416 in
which the metadata is stored. In one embodiment, the registry
database 1416 is a relational database such as MySQL, but, in
other embodiments, it may be a non-relational structured data
storage system like MongoDB, Apache Cassandra, or Redis.
For standardized communication with the API server 1402,
the registry server 1406 includes a registry API endpoint
1418. The registry API endpoint 1418 is a RESTful API that
programmatically exposes the database functions to the API
server 1402 so that the API server may query, insert, and
delete VM image metadata upon receiving requests from
clients. In one embodiment, the registry server 1406 may be
any public or private web service that exposes the RESTful
API to the API server 1402. In alternative embodiments, the
registry server 1402 may be implemented on a dedicated
information processing system of may be a software compo-
nent stored on a non-transitory computer-readable medium in
the same information processing system as the API server
1402.

In operation, clients 1408a-7 exploit the external API end-
point 1410 exposed by the API server 1402 to lookup, store,
and retrieve VM images managed by the VM image service
1400. In the example embodiment described below, clients
may issue HTTP GETs, PUTs, POSTs, and HEADs to com-
municate with the API server 1402. For example, a client may
issue a GET request to <API_server URL>/images/ to
retrieve the list of available public images managed by the
image service 1400. Upon receiving the GET request from
the client, the API server sends a corresponding HTTP GET
request to the registry server 1406. In response, the registry
server 1406 queries the registry database 1416 for all images
with metadata indicating that they are public. The registry
server 1406 returns the image list to the API server 1402
which forwards it on to the client. For each image in the
returned list, the client may receive a JSON-encoded map-
ping containing the following information: URI, name, disk_
format, container format, and size. As another example, a
client may retrieve a virtual machine image from the service
1400 by sending a GET request to <API_server URL>/im-
ageskimage URI>. Uponreceipt ofthe GET request, the API
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server 1404 retrieves the VM image data from the image store
1404 by making an internal API call to one of the storage API
endpoints 1414a-n and also requests the metadata associated
with the image from the registry server 1406. The API server
1402 returns the metadata to the client as a set of HTTP
headers and the VM image as data encoded into the response
body. Further, to store a VM image and metadata in the
service 1400, a client may issue a POST request to <API_s-
erver_URL>/images/ with the metadata in the HTTP header
and the VM image data in the body of the request. Upon
receiving the POST request, the API server 1402 issues a
corresponding POST request to the registry API endpoint
1418 to store the metadata in the registry database 1416 and
makes an internal API call to one of the storage API endpoints
1414a-n to store the VM image in the image store 1404. It
should be understood that the above is an example embodi-
ment and communication via the API endpoints in the VM
image service 1400 may be implemented in various other
manners, such as through non-RESTful HTTP interactions,
RPC-style communications, internal function calls, shared
memory communication, or other communication mecha-
nisms.

In one embodiment, the API server 1402 includes a plugin
mechanism that allows for a user-configurable response to
image requests. For example, in one embodiment sensitive
security information is held by a user outside the scope of the
cloud computing system. When a request is made for a
generic VM image, the plugin creates a secure connection to
a user-controlled endpoint and receives the necessary infor-
mation from the user’s system. The plugin then injects the
custom authentication information into the image prior to the
image being instantiated. Other embodiments can modify the
image or the image request in arbitrary user-defined ways.

Further, in some embodiments, the VM image service 1400
may include security features such as an authentication man-
ager to authenticate and manage user, account, role, project,
group, quota, and security group information associated with
the managed VM images. For example, an authentication
manager may filter every request received by the API server
1402 to determine if the requesting client has permission to
access specific VM images. In some embodiments, Role-
Based Access Control (RBAC) may be implemented in the
context of the VM image service 1400, whereby a user’s roles
defines the APl commands that user may invoke. For
example, certain API calls to the API server 1402, such as
POST requests, may be only associated with a specific subset
of roles.

To the extent that some components described relative to
the VM image service 1400 are similar to components of the
larger cloud computing system 110, those components may
be shared between the cloud computing system and the VM
image service, or they may be completely separate. Further, to
the extend that “controllers,” “nodes,” “servers,” “managers,”
“VMSs,” or similar terms are described relative to the VM
image service 1400, those can be understood to comprise any
of a single information processing device 210 as described
relative to FIG. 2, multiple information processing devices
210, a single VM as described relative to FIG. 2, a group or
cluster of VMs or information processing devices as
described relative to FIG. 3. These may run on a single
machine or a group of machines, but logically work together
to provide the described function within the system.

Turning now to FIG. 15, an [aaS-style computational cloud
service (a “compute” service) is shown at 1500 according to
one embodiment. This is one embodiment of a cloud control-
ler 120 with associated cloud service 130 as described relative
to FIG. 1. Except as described relative to specific embodi-
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ments, the existence of a compute service does not require or
prohibit the existence of other portions of the cloud comput-
ing system 110 nor does it require or prohibit the existence of
other cloud controllers 120 with other respective services
130.

To the extent that some components described relative to
the compute service 1500 are similar to components of the
larger cloud computing system 110, those components may
be shared between the cloud computing system 110 and the
compute service 1500, or they may be completely separate.
Further, to the extend that “controllers,” “nodes,” “servers,”
“managers,” “VMs,” or similar terms are described relative to
the compute service 1500, those can be understood to com-
prise any of a single information processing device 210 as
described relative to FIG. 2, multiple information processing
devices 210, a single VM as described relative to FIG. 2, a
group or cluster of VMs or information processing devices as
described relative to FIG. 3. These may run on a single
machine or a group of machines, but logically work together
to provide the described function within the system.

In one embodiment, compute service 1500 includes an API
Server 1510, a Compute Controller 1520, an Auth Manager
1530, an Object Store 1540, a Volume Controller 1550, a
Network Controller 1560, and a Compute Manager 1570.
These components are coupled by a communications network
of the type previously described. In one embodiment, com-
munications between various components are message-ori-
ented, using HTTP or a messaging protocol such as AMQP,
ZeroMQ, or STOMP.

Although various components are described as “calling”
each other or “sending” data or messages, one embodiment
makes the communications or calls between components
asynchronous with callbacks that get triggered when
responses are received. This allows the system to be archi-
tected in a “shared-nothing™ fashion. To achieve the shared-
nothing property with multiple copies of the same compo-
nent, compute service 1500 further includes distributed data
store 1590. Global state for compute service 1500 is written
into this store using atomic transactions when required.
Requests for system state are read out of this store. In some
embodiments, results are cached within controllers for short
periods of time to improve performance. In various embodi-
ments, the distributed data store 1590 can be the same as, or
share the same implementation as Object Store 800 discussed
relative to FIG. 8.

In one embodiment, the API server 1510 includes external
API endpoints 1512. In one embodiment, the external API
endpoints 1512 are provided over an RPC-style system, such
as CORBA, DCE/COM, SOAP, or XML-RPC. These follow
the calling structure and conventions defined in their respec-
tive standards. In another embodiment, the external API end-
points 1512 are basic HTTP web services following a REST
pattern and identifiable via URL. Requests to read a value
from aresource are mapped to HTTP GETs, requests to create
resources are mapped to HTTP PUTs, requests to update
values associated with a resource are mapped to HTTP
POSTs, and requests to delete resources are mapped to HTTP
DELETEs. In some embodiments, other REST-style verbs
are also available, such as the ones associated with WebDay.
In a third embodiment, the API endpoints 1512 are provided
via internal function calls, IPC, or a shared memory mecha-
nism. Regardless of how the API is presented, the external
API endpoints 1512 are used to handle authentication, autho-
rization, and basic command and control functions using
various API interfaces. In one embodiment, the same func-
tionality is available via multiple APIs, including APIs asso-
ciated with other cloud computing systems. This enables API
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compatibility with multiple existing tool sets created for
interaction with offerings from other vendors.

The Compute Controller 1520 coordinates the interaction
of the various parts of the compute service 1500. In one
embodiment, the various internal services that work together
to provide the compute service 1500, are internally decoupled
by adopting a service-oriented architecture (SOA). The Com-
pute Controller 1520 serves as an internal API server, allow-
ing the various internal controllers, managers, and other com-
ponents to request and consume services from the other
components. In one embodiment, all messages pass through
the Compute Controller 1520. In a second embodiment, the
Compute Controller 1520 brings up services and advertises
service availability, but requests and responses go directly
between the components making and serving the request. In a
third embodiment, there is a hybrid model in which some
services are requested through the Compute Controller 1520,
but the responses are provided directly from one component
to another.

In one embodiment, communication to and from the Com-
pute Controller 1520 is mediated via one or more internal API
endpoints 1522, provided in a similar fashion to those dis-
cussed above. The internal API endpoints 1522 differ from
the external API endpoints 1512 in that the internal API
endpoints 1522 advertise services only available within the
overall compute service 1500, whereas the external API end-
points 1512 advertise services available outside the compute
service 1500. There may be one or more internal APIs 1522
that correspond to external APIs 1512, but it is expected that
there will be a greater number and variety of internal API calls
available from the Compute Controller 1520.

In one embodiment, the Compute Controller 1520 includes
an instruction processor 1524 for receiving and processing
instructions associated with directing the compute service
1500. For example, in one embodiment, responding to an API
call involves making a series of coordinated internal API calls
to the various services available within the compute service
1500, and conditioning later API calls on the outcome or
results of earlier API calls. The instruction processor 1524 is
the component within the Compute Controller 1520 respon-
sible for marshalling arguments, calling services, and making
conditional decisions to respond appropriately to API calls.

In one embodiment, the instruction processor 1524 is
implemented as described above relative to FIG. 3, specifi-
cally as a tailored electrical circuit or as software instructions
to be used in conjunction with a hardware processor to create
a hardware-software combination that implements the spe-
cific functionality described herein. To the extent that one
embodiment includes computer-executable instructions,
those instructions may include software that is stored on a
computer-readable medium. Further, one or more embodi-
ments have associated with them a buffer. The buffer can take
the form of data structures, a memory, a computer-readable
medium, or an off-script-processor facility. For example, one
embodiment uses a language runtime as an instruction pro-
cessor 1524, running as a discrete operating environment, as
a process in an active operating environment, or can be run
from a low-power embedded processor. In a second embodi-
ment, the instruction processor 1524 takes the form of a series
of interoperating but discrete components, some or all of
which may be implemented as software programs. In another
embodiment, the instruction processor 1524 is a discrete
component, using a small amount of flash and a low power
processor, such as a low-power ARM processor. In a further
embodiment, the instruction processor includes a rule engine
as a submodule as described herein.
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In one embodiment, the Compute Controller 1520 includes
a message queue as provided by message service 1526. In
accordance with the service-oriented architecture described
above, the various functions within the compute service 1500
are isolated into discrete internal services that communicate
with each other by passing data in a well-defined, shared
format, or by coordinating an activity between two or more
services. In one embodiment, this is done using a message
queue as provided by message service 1526. The message
service 1526 brokers the interactions between the various
services inside and outside the Compute Service 1500.

In one embodiment, the message service 1526 is imple-
mented similarly to the message service described relative to
FIGS. 6a-6¢. The message service 1526 may use the message
service 140 directly, with a set of unique exchanges, or may
use a similarly configured but separate service.

The Auth Manager 1530 provides services for authenticat-
ing and managing user, account, role, project, group, quota,
and security group information for the compute service 1500.
In a first embodiment, every call is necessarily associated
with an authenticated and authorized entity within the system,
and so is or can be checked before any action is taken. In
another embodiment, internal messages are assumed to be
authorized, but all messages originating from outside the
service are suspect. In this embodiment, the Auth Manager
checks the keys provided associated with each call received
over external API endpoints 1512 and terminates and/or logs
any call that appears to come from an unauthenticated or
unauthorized source. In a third embodiment, the Auth Man-
ager 1530 is also used for providing resource-specific infor-
mation such as security groups, but the internal API calls for
that information are assumed to be authorized. External calls
are still checked for proper authentication and authorization.
Other schemes for authentication and authorization can be
implemented by flagging certain API calls as needing verifi-
cation by the Auth Manager 1530, and others as needing no
verification. In one embodiment, the Auth Manager 1530 is
implemented similarly to or as a proxy to authn/authz service
700 as described relative to FIG. 7.

In one embodiment, external communication to and from
the Auth Manager 1530 is mediated via one or more authen-
tication and authorization API endpoints 1532, provided in a
similar fashion to those discussed above. The authentication
and authorization API endpoints 1532 differ from the external
API endpoints 1512 in that the authentication and authoriza-
tion API endpoints 1532 are only used for managing users,
resources, projects, groups, and rules associated with those
entities, such as security groups, RBAC roles, etc. In another
embodiment, the authentication and authorization API end-
points 1532 are provided as a subset of external API endpoints
1512.

In one embodiment, the Auth Manager 1530 includes a
rules processor 1534 for processing the rules associated with
the different portions of the compute service 1500. In one
embodiment, this is implemented in a similar fashion to the
instruction processor 1524 described above.

The Object Store 1540 provides redundant, scalable object
storage capacity for arbitrary data used by other portions of
the compute service 1500. At its simplest, the Object Store
1540 can be implemented one or more block devices exported
over the network. In a second embodiment, the Object Store
1540 is implemented as a structured and possibly distributed
data organization system. Examples include relational data-
base systems—both standalone and clustered—as well as
non-relational structured data storage systems like Mon-
goDB, Apache Cassandra, or Redis. In a third embodiment,
the Object Store 1540 is implemented as a redundant, even-
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tually consistent, fully distributed data storage service, such
as the object storage service 800 described relative to FIG. 8.

In one embodiment, external communication to and from
the Object Store 1540 is mediated via one or more object
storage API endpoints 1542, provided in a similar fashion to
those discussed above. In one embodiment, the object storage
API endpoints 1542 are internal APIs only. In a second
embodiment, the Object Store 1540 is provided by a separate
cloud service 130, so the “internal” API used for compute
service 1500 is the same as the external API provided by the
object storage service itself.

In one embodiment, the Object Store 1540 includes an
Image Service 1544. The Image Service 1544 is a lookup and
retrieval system for virtual machine images. In one embodi-
ment, various virtual machine images can be associated with
aunique project, group, user, or name and stored in the Object
Store 1540 under an appropriate key. In this fashion multiple
different virtual machine image files can be provided and
programmatically loaded by the compute service 1500. Inone
embodiment, the image service 1544 is implemented as
image service 1400, as described relative to FIG. 14.

The Volume Controller 1550 coordinates the provision of
block devices for use and attachment to virtual machines. In
one embodiment, the Volume Controller 1550 includes Vol-
ume Workers 1552. The Volume Workers 1552 are imple-
mented as unique virtual machines, processes, or threads of
control that interact with one or more backend volume pro-
viders 1554 to create, update, delete, manage, and attach one
or more volumes 1556 to a requesting VM.

In a first embodiment, the Volume Controller 1550 is
implemented using a SAN that provides a sharable, network-
exported block device that is available to one or more VMs,
using a network block protocol such as iSCSI. In this embodi-
ment, the Volume Workers 1552 interact with the SAN to
manage and iSCSI storage to manage [LVM-based instance
volumes, stored on one or more smart disks or independent
processing devices that act as volume providers 1554 using
their embedded storage 1556. In a second embodiment, disk
volumes 1556 are stored in the Object Store 1540 as image
files under appropriate keys. The Volume Controller 1550
interacts with the Object Store 1540 to retrieve a disk volume
1556 and place it within an appropriate logical container on
the same information processing system 240 that contains the
requesting VM. An instruction processing module acting in
concert with the instruction processor and hypervisor on the
information processing system 240 acts as the volume pro-
vider 1554, managing, mounting, and unmounting the vol-
ume 1556 on the requesting VM. In a further embodiment, the
same volume 1556 may be mounted on two or more VMs, and
a block-level replication facility may be used to synchronize
changes that occur in multiple places. In a third embodiment,
the Volume Controller 1550 acts as a block-device proxy for
the Object Store 1540, and directly exports a view of one or
more portions of the Object Store 1540 as a volume. In this
embodiment, the volumes are simply views onto portions of
the Object Store 1540, and the Volume Workers 1554 are part
of the internal implementation of the Object Store 1540.

In one embodiment, the Network Controller 1560 manages
the networking resources for VM hosts managed by the com-
pute manager 1570. Messages received by Network Control-
ler 1560 are interpreted and acted upon to create, update, and
manage network resources for compute nodes within the
compute service, such as allocating fixed IP addresses, con-
figuring VLLANSs for projects or groups, or configuring net-
works for compute nodes.

In one embodiment, the Network Controller 1560 is imple-
mented similarly to the network service 400 described rela-
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tive to FIG. 4. The network controller 1560 may use a shared
cloud controller directly, with a set of unique addresses, iden-
tifiers, and routing rules, or may use a similarly configured but
separate service. In another embodiment

In one embodiment, the Compute Manager 1570 manages
computing instances for use by API users using the compute
service 1500. In one embodiment, the Compute Manager
1570 is coupled to a plurality of resource pools 1572, each of
which includes one or more compute nodes 1574. Each com-
pute node 1574 is a virtual machine management system as
described relative to FIG. 3 and includes a compute worker
1576, a module working in conjunction with the hypervisor
and instruction processor to create, administer, and destroy
multiple user- or system-defined logical containers and oper-
ating environments—VMs—according to requests received
through the API. In various embodiments, the certain portions
of the overall resource pool 1572 may be organized into
clusters, such as clusters 1572a and 157254. In one embodi-
ment, each resource pool 1572 is organized into a cluster,
physically located in one or more data centers in one or more
different locations. In another embodiment, resource pools
have different physical or software resources, such as differ-
ent available hardware, higher-throughput network connec-
tions, or lower latency to a particular location.

In one embodiment, the Compute Manager 1570 allocates
VM images to particular compute nodes 1574 via a Scheduler
1578. The Scheduler 1578 is a matching service; requests for
the creation of new VM instances come in and the most
applicable Compute nodes 1574 are selected from the pool of
potential candidates. In one embodiment, the Scheduler 1578
selects a compute node 1574 using a random algorithm.
Because the node is chosen randomly, the load on any par-
ticular node tends to be non-coupled and the load across all
resource pools tends to stay relatively even.

In a second embodiment, a smart scheduler 1578 is used. A
smart scheduler analyzes the capabilities associated with a
particular resource pool 1572 and its component services to
make informed decisions on where a new instance should be
created. When making this decision it consults not only all the
Compute nodes across the resource pools 1572 until the ideal
host is found.

In a third embodiment, a distributed scheduler 1578 is
used. A distributed scheduler is designed to coordinate the
creation of instances across multiple compute services 1500.
Not only does the distributed scheduler 1578 analyze the
capabilities associated with the resource pools 1572 available
to the current compute service 1500, it also recursively con-
sults the schedulers of any linked compute services until the
ideal host is found.

In one embodiment, either the smart scheduler or the dis-
tributed scheduler is implemented using rules engine 1579
and a series of associated rules regarding costs and weights
associated with desired compute node characteristics. When
deciding where to place an Instance, rules engine 1579 com-
pares a Weighted Cost for each node. In one embodiment, the
Weighting is just the sum of the total Costs. In a second
embodiment, a Weighting is calculated using a exponential or
polynomial algorithm. In the simplest embodiment, costs are
nothing more than integers along a fixed scale, although costs
can also be represented by floating point numbers, vectors, or
matrices. Costs are computed by looking at the various Capa-
bilities of the available node relative to the specifications of
the Instance being requested. The costs are calculated so that
a “good” match has lower cost than a “bad” match, where the
relative goodness of a match is determined by how closely the
available resources match the requested specifications.
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In one embodiment, specifications can be hierarchical, and
can include both hard and soft constraints. A hard constraint
is a constraint is a constraint that cannot be violated and have
an acceptable response. This can be implemented by having
hard constraints be modeled as infinite-cost requirements. A
soft constraint is a constraint that is preferable, but not
required. Different soft constraints can have different
weights, so that fulfilling one soft constraint may be more
cost-effective than another. Further, constraints can take on a
range of values, where a good match can be found where the
available resource is close, but not identical, to the requested
specification. Constraints may also be conditional, such that
constraint A is a hard constraint or high-cost constraint if
Constraint B is also fulfilled, but can be low-cost if Constraint
C is fulfilled.

As implemented in one embodiment, the constraints are
implemented as a series of rules with associated cost func-
tions. These rules can be abstract, such as preferring nodes
that don’t already have an existing instance from the same
project or group. Other constraints (hard or soft), may
include: a node with available GPU hardware; a node with an
available network connection over 100 Mbps; a node that can
run Windows instances; a node in a particular geographic
location, etc.

When evaluating the cost to place a VM instance on a
particular node, the constraints are computed to select the
group of possible nodes, and then a weight is computed for
each available node and for each requested instance. This
allows large requests to have dynamic weighting; if 1000
instances are requested, the consumed resources on each node
are “virtually” depleted so the Cost can change accordingly.

In a further embodiment, the scheduler can be directly
accessed or modified using an API and/or a plugin interface.
In one embodiment, a plugin is implemented as a series of
loadable and executable rules that can be provided to the
compute service 1500 and run by the scheduler as part of its
weighting or allocation process. In one embodiment, this
loadable ruleset can be implemented using a dynamically
loadable or runnable program that has a series of expected
inputs and provides its information on a defined series of
outputs. In one embodiment these are “stdin” and “stdout.” In
a second embodiment, these are provided as function calls
within a program module.

Turning now to FIG. 16, a diagram showing one embodi-
ment of the process of instantiating and launching a VM
instance is shown as diagram 1600. Although the implemen-
tation of the image instantiating and launching process will be
shown in a manner consistent with the embodiment of the
compute service 1500 as shown relative to FIG. 15, the pro-
cess is not limited to the specific functions or elements shown
in FIG. 15. For clarity of explanation, internal details not
relevant to diagram 1600 have been removed from the dia-
gram relative to FIG. 15. Further, while some requests and
responses are shown in terms of direct component-to-com-
ponent messages, in at least one embodiment the messages
are sent via a message service, such as message service 1526
as described relative to FIG. 15.

At time 1602, the API Server 1510 receives a request to
create and run an instance with the appropriate arguments. In
one embodiment, this is done by using a command-line tool
that issues arguments to the API server 1510. In a second
embodiment, this is done by sending a message to the API
Server 1510. In one embodiment, the API to create and run the
instance includes arguments specifying a resource type, a
resource image, and control arguments. A further embodi-
ment includes requester information and is signed and/or
encrypted for security and privacy. At time 1604, API server
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1510 accepts the message, examines it for API compliance,
and relays a message to Compute Controller 1520, including
the information needed to service the request. In an embodi-
ment in which user information accompanies the request,
either explicitly or implicitly via a signing and/or encrypting
key or certificate, the Compute Controller 1520 sends a mes-
sage to Auth Manager 1530 to authenticate and authorize the
request at time 1606 and Auth Manager 1530 sends back a
response to Compute Controller 1520 indicating whether the
request is allowable at time 1608. If the request is allowable,
amessage is sent to the Compute Manager 1570 to instantiate
the requested resource at time 1610. At time 1612, the Com-
pute Manager selects a Compute Worker 1576 and sends a
message to the selected Worker to instantiate the requested
resource. At time 1614, Compute Worker identifies and inter-
acts with Network Controller 1560 to get a proper VLAN and
1P address as described in steps 451-457 relative to FIG. 4. At
time 1616, the selected Worker 1576 interacts with the Object
Store 1540 and/or the Image Service 1544 to locate and
retrieve an image corresponding to the requested resource. If
requested via the API, or used in an embodiment in which
configuration information is included on a mountable vol-
ume, the selected Worker interacts with the Volume Control-
ler 1550 at time 1618 to locate and retrieve a volume for the
to-be-instantiated resource. At time 1620, the selected
Worker 1576 uses the available virtualization infrastructure
as described relative to FIG. 2 to instantiate the resource,
mount any volumes, and perform appropriate configuration.
At time 1622, selected Worker 1576 interacts with Network
Controller 1560 to configure routing as described relative to
step 460 as discussed relative to FIG. 4. At time 1624, a
message is sent back to the Compute Controller 1520 via the
Compute Manager 1570 indicating success and providing
necessary operational details relating to the new resource. At
time 1626, a message is sent back to the API Server 1510 with
the results of the operation as a whole. At time 1699, the
API-specified response to the original command is provided
from the API Server 1510 back to the originally requesting
entity. If at any time a requested operation cannot be per-
formed, then an error is returned to the API Server at time
1690 and the API-specified response to the original command
is provided from the API server at time 1692. For example, an
error can be returned if a request is not allowable at time 1608,
if a VLAN cannot be created or an IP allocated at time 1614,
if an image cannot be found or transferred at time 1616, etc.

Various elements have been described as being pluggable,
and the operation of particular components in a pluggable
fashion has been described relative to the respective underly-
ing systems. A general architecture for pluggability 1700 is
described below relative to FIG. 17. Individual adaptation to
different systems is contemplated and expected.

In one embodiment, the pluggable architecture 1700 is
in-line with an API endpoint 1712. This API endpoint may be
internal or external, and may be hosted on a server external to
the plug-in architecture 1700 such as API server 1710.

The plug-in loader 1702 coordinates the interaction of the
various parts of the plugin system. In one embodiment, the
plugin system is disposed between an internal API 1714 and
an output 1716 which calls or interacts with an internal sys-
tem or API, shown in FIG. 17 as internal API 1718. In the
event that no plug-in is loaded, calls on the API 1714 are
proxied directly through to the output 1716 and from there to
the internal API 1718. In this fashion the plug-in system can
be transparent to ordinary calls.

If a user wishes to interact with the plugin system 1700, the
user interacts with a special plugin API 1720. By means of
this plugin API1 1720 the plugin system itself can be modified.
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In one embodiment, the plugin API is an HTTP API, and it
uses the same authentication services as previously
described. The HTTP API allows control signals to be set
using headers or uploaded with a PUT or POST.

The plugin API 1720 interfaces with the plugin loader
1702. In one embodiment, the plugin loader includes a com-
munication interface 1704 and an instruction processor 1722.
The communication interface 1704 allows the plugin system
to interact with other remote systems to implement a portion
of'a plugin. The instruction processor allows various types of
plugins to be used by the plugin system 1700.

In particular, one embodiment of the plug-in loader 1702
includes an RPC module 1723, a binary loader module 1724,
a process call module 1725 and a rule engine 1726. In one
embodiment, the instruction processor 1722 and each sub-
module is implemented as described above relative to FIG. 3,
specifically as a tailored electrical circuit or as software
instructions to be used in conjunction with a hardware pro-
cessor to create a hardware-software combination that imple-
ments the specific functionality described herein. To the
extent that one embodiment includes processor-executable
instructions, those instructions may include software that is
stored on a processor-readable medium. Further, one or more
embodiments have associated with them a buffer. The buffer
can take the form of data structures, a memory, a processor-
readable medium, or an off-script-processor facility. For
example, one embodiment uses a language runtime as an
instruction processor 1722, running as a discrete operating
environment, as a process in an active operating environment,
or can be run from a low-power embedded processor. In a
second embodiment, the instruction processor 1722 takes the
form of a series of interoperating but discrete components,
some or all of which may be implemented as software pro-
grams. In another embodiment, the instruction processor
1722 is a discrete component, such as an embedded hardware
processor.

In one embodiment, the RPC submodule 1723 allows
direct interaction with a remote service in the implementation
of a plugin. In a first embodiment, the plugin is defined
completely in the context of the remote system. A call from
the internal API 1714 is sent to a specified remote system via
an RPC call. This RPC call is sent over the communication
interface 1704 and is formatted as an HTTP request, XML-
RPC request, SOAP request, COM request, CORBA request,
or similar. The remote system (not shown) processes the
request based on the arguments and returns a response. The
plug-in loader 1702 then proxies the result from the RPC
request to internal API 1718 via output 1716.

In one embodiment, the binary loader submodule 1724 is
used to load a user-provided script or binary module. Via the
plugin API 1720, a user posts the module and entry point
information where it is saved in a location accessible to the
plug-in loader 1702. A call from the internal API 1714 is sent
to the binary loader submodule 1724, which loads the user-
provided module and calls the appropriate entry point with
the provided arguments. The plugin processes the request
based on the arguments and returns a response. The plug-in
loader 1702 then proxies the result from the binary loader
submodule 1724 request to internal API 1718 via output
1716.

In one embodiment, the binary loader submodule 1725 is
used to call a user-provided script or binary module that is run
out-of-process. Via the plugin API 1720, a user posts the
program and call information where it is saved in a location
accessible to the plug-in loader 1702. A call from the internal
API 1714 is sent to the process call submodule 1725, which
uses the operating system API to load can call the user-
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provided program with the correct arguments. The plugin
processes the request based on the arguments and returns a
response. The plug-in loader 1702 then proxies the result
from the process call submodule 1725 request to internal API
1718 via output 1716.

Those of skill in the art will recognize that the loadable
modules provided to the binary loader submodule 1724 or the
process call submodule 1725 may need to be verified, signed,
or run in a sandbox or in some type of secure operating
environment to avoid issues of privilege escalation or overuse
of resources.

In one embodiment, the rule engine submodule 1726 is
used to process a user-provided set of rules. Via the plugin
API 1720, a user posts a set of processing rules that are
evaluated in order via the rule engine 1726. The outcome after
all applicable rules have been followed is sent to internal API
1718 via output 1716.

Using the plugin-based architecture allows various advan-
tages over existing systems. The plugin mechanisms
described allow the specialization of the system to particular
datasets or processing loads, giving better performance and a
lower total cost per operation.

In another embodiment, the plugin-based architecture
allows multi-zone optimization. By allowing different types
ofresources in various zones, a user can dictate where various
elements of the cloud computing system should be placed.
Because the end user has more knowledge concerning the
“hot spots” in a particular application, the exact mix of
resources available for a particular call can be optimized to
the program being run, allowing maximum flexibility and
parallel speed when performing all different types of jobs.

In a further embodiment, the plugin-based architecture can
change the composition of the processors while a program is
being executed, allowing types of optimizations impossible
with a fixed set of hardware resources. For example, in a
further embodiment, the plugin-based architecture includes
user-provided logic to optimize for non-speed considerations,
such as cost.

In a further embodiment, the plugins are used as part of a
machine learning process. Machine learning is an umbrella
term in which one or more algorithms are automatically
developed using an interactive process to characterize or opti-
mize a set of inputs. Using machine learning, systems are able
to automatically learn to recognize complex patterns and
make intelligent decisions based on data. Using the plugin-
based architecture described herein, machine learning is used
to tune the characteristics and number of hardware resources
during a run so as to come closer to the desired parameters.
For example, one particular computation may be practicable
using either ten very powerful virtual machines, or 100 much
weaker virtual machines, or some mix of both. By observing
the use of machines over time, a machine learning algorithm
can determine that the calculation can be done in the least
amount of time using 12 powerful machines and 17 less
powerful machines; that it can be performed using the least
amount of money using 2 powerful machines and 68 less
powerful machines, or that optimizing for the most efficient
use of time and money together uses 6 powerful machines and
24 less powerful machines. In this fashion, exposing the
underlying APIs via a plugin system allows automatic “on the
fly”” tuning. Unlike prior art systems, which do not allow for
user-directed prioritization, the plugin-based architecture
allows higher-dimensional user-directed learning and priori-
tization.

In one embodiment, the machine learning process runs as
another module in instruction processor 1722, on a compute
server, or on a dedicated processor. The input to the machine
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learning process is provided via the AP11714 and sent via the
RPC submodule 1723 to the machine learning process. The
output of the machine learning process is returned via the
RPC submodule 1723 and guides the allocation of machines.

In one embodiment, the plugin-based architecture the
scheduler selects a host to run a command based on a set of
constraints, which are specified as key/value pairs. Different
clusters, vendors, or workloads do better with different types
of resource allocation, and the plugin-based architecture
allows modification of the allocation at a service provider
level and at a tenant level. For example, a first embodiment
achieves better performance with horizontal allocation, plac-
ing each new VM in a new rack, round robin style. A second
embodiment achieves better performance with vertical allo-
cation, placing each new VM in the same rack until the rack is
full.

In a further embodiment, resources that are in the same
project can be placed “next” to each other for better latency.
For example, one embodiment uses the plugin architecture to
split up a large dataset between background storage pools
based upon a user-directed sharding key and then uses the
locations of different parts of the dataset to place compute
VMs on the same or nearby physical machines, reducing
latency and network transit time.

Some of the constraints may be user-specified, and may
include both hard and soft constraints. Pluggable architecture
for various algorithms may be provided, with the possibility
of providing an allocator via an API call or discovering the
available constraints that can be specified through API calls.

In one embodiment, the pluggable allocator uses a
weighted allocation scheme. This allocator finds a “best fit”
VM or storage allocation based upon the available resources
and available constraints. The provisioned VM may not nec-
essarily be exactly what was asked, but would instead be
provisioned according to a fitness function that evaluated the
“best” VM available at the time. In various embodiments,
different weights are placed on price, geographic location,
proximity to other VMs, particular capabilities (CPU, disk,
GPU), network throughput, and latency to a particular loca-
tion.

Inone embodiment, the pluggable allocator uses a dynamic
weighting scheme. In this embodiment, the fitness function
and weights used to determine the “best” allocation of
resources are changed over time. This is done either directly
by a user through the plugin API or in response to an equation
or change in another value.

Inone embodiment, the pluggable allocator uses an auction
weighting scheme. In this embodiment, different datacenters,
clusters, zones, or other entities “bid” for different VMs,
storage resources, or network resources to be allocated to
their region. Bidding is used in this embodiment as a method
to adaptively find an equilibrium in a distributed system. This
allows better balancing between clusters and more optimal
utilization. In a further embodiment, price is used in an auc-
tion weighting scheme to dynamically balance between ven-
dors.

Those of skill in the art will appreciate that it would be
difficult or impossible to have an auction weighting scheme
that balances between multiple cloud vendors in a prior art
system. Not only would it be difficult to get multiple vendors
to work together as closely as required, but the plugin-based
architecture is required for different users to input their pref-
erences in a way that makes the system respond appropriately
to their desires.

In one embodiment, the pluggable allocator uses an
energy-minimization scheme. Multiple zones corresponding
to different physical locations are used to optimize energy
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use. For example, compute-intensive workloads migrate
around the globe so that they are always on the nighttime side
of the planet. In a second embodiment, hot datacenters shed
load to decrease their total energy output.

Further embodiments are contemplated that integrate the
plugin-based architecture for more than one service or com-
ponent. For example, the plugin-based network service canbe
used in conjunction with the plugin-based authn/authz ser-
vice to provide a cloud-based virtual private network that
incorporates cloud resources but authenticates to a private
LDARP server behind a company firewall. In this embodiment,
the network service plugin is used to create and route virtual
private networks and to encrypt those networks based on a
user-defined key or certificate. The authn/authz service uses a
plugin to proxy authentication duties to a private LDAP
server that is connected via the network service to authenti-
cate users and machines using the VPN.

In a further embodiment, the authn/authz service uses a
plugin to provide private RBAC security for consumption by
other services. The object storage service uses a plugin to
consume the private RBAC security and to modify the
response to individual requests based on responses from the
authn/authz service.

With each service instrumented and provided with the plu-
gin-based architecture as described above, user-based modi-
fication of the cloud system is possible while still maintaining
multi-tenant security and availability. Although illustrative
embodiments have been shown and described, a wide range
of modification, change and substitution is contemplated in
the foregoing disclosure and in some instances, some features
of'the embodiments may be employed without a correspond-
ing use of other features. In particular, the use of multiple
plugin-based services to modify the working of an individual
cloud computing system or an individual group of resources
is contemplated. Accordingly, it is appropriate that the
appended claims be construed broadly and in a manner con-
sistent with the scope of the embodiments disclosed herein.

What is claimed is:

1. A cloud computing system, the system comprising:

a compute service, the compute service including a request
application programming interface (API), an allocator,
and a physical resource pool; the allocator including a
processor, a computer-readable storage medium, and a
network interface, and a compute plug-in facility; the
physical resource pool including a plurality of informa-
tion processing devices, each information processing
device including a processor, a computer-readable
medium, and network interface;

a network service logically coupling the request API, the
allocator and the physical resource pool, the network
service further including a default packet routing policy,
a default packet filtering policy, and a network plug-in
facility;

wherein the allocator is operative to instantiate one or more
virtual resources based on one or more requests received
via the request API, and wherein each virtual resource,
when instantiated, is associated with one of the plurality
of physical resources according to an allocation policy;
and wherein there is a default allocation policy;

wherein the compute plug-in facility further comprises a
plug-in API, and wherein the compute plug-in facility is
operable to modify the allocation policy in response to a
request to use a non-default allocation policy via the
plug-in API;

wherein the network plug-in facility is operable to modify
one of the default packet routing policy and the default
packet filtering policy in response to a request to use a
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non-default routing policy; and wherein the subsequent
routing and/or filtering of packets is directed by the
non-default packet routing policy; and

wherein the subsequent association of virtual resources

with physical resources is directed by the non-default
allocation policy.
2. The cloud computing system of claim 1, wherein the
default allocation policy is provided by a first party and the
non-default allocation policy is provided by a second party.
3. The cloud computing system of claim 2, wherein the
physical resource pool is controlled by the first party and
resources from the physical resource pool are temporarily
provided to the second party.
4. The cloud computing system of claim 1, wherein the
virtual resources include one or more of a logical container,
an operating environment, and a virtual router.
5. The cloud computing system of claim 1, wherein the
default routing policy is provided by a first party and the
non-default routing policy is provided by a second party.
6. The cloud computing system of claim 1, wherein the
system further comprises an authentication and authorization
service.
7. The cloud computing system of claim 6, wherein the
authentication and authorization service includes a plug-in
facility; and wherein requests received via the request API are
authenticated via the plug-in facility.
8. A cloud computing system, the system comprising:
a storage service, acompute service, a network service, and
a physical resource pool,

the storage service including a storage request application
programming interface (API) and a storage allocator, the
storage allocator including a processor, a computer-
readable storage medium, and a network interface, and a
storage plug-in facility;

the compute service including a compute request API and

a compute allocator, the compute allocator including a
processor, a computer-readable storage medium, and a
network interface, and a compute plug-in facility;

the network service including a default packet routing

policy, a default packet filtering policy, and a network
plug-in facility;

the physical resource pool including a plurality of infor-

mation processing devices, each information processing
device including a processor, a computer-readable
medium, and network interface;

wherein the storage allocator is operative to associate one

or more objects accessed via the storage request API
with one or more of the plurality of physical resources
according to a storage allocation policy; and wherein
there is a default storage allocation policy;

wherein the storage plug-in facility further comprises a

storage plug-in API, and wherein the storage plug-in
facility is operable to modify the storage allocation
policy in response to a request to use a non-default
storage allocation policy via the storage plug-in API;
and wherein the subsequent association of objects with
physical resources by the storage allocator is directed by
the non-default allocation policy;

wherein the compute allocator is operative to instantiate

one or more virtual resources based on one or more
requests received via the compute request API, and
wherein each virtual resource, when instantiated, is
associated with one of the plurality of physical resources
according to a compute allocation policy; and wherein
there is a default compute allocation policy;

wherein the compute plug-in facility further comprises a

compute plug-in API, and wherein the compute plug-in
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facility is operable to modify the compute allocation
policy in response to a request to use a non-default
compute allocation policy via the compute plug-in API;

wherein the network plug-in facility is operable to modify
one of the default packet routing policy and the default
packet filtering policy in response to a request to use a
non-default routing policy; and wherein the subsequent
routing and/or filtering of packets is directed by the
non-default packet routing policy; and

wherein the subsequent association of virtual resources

with physical resources by the compute allocator is
directed by the non-default allocation policy.

9. The cloud computing system of claim 8, wherein the
default storage allocation policy is provided by a first party
and the non-default storage allocation policy is provided by a
second party.

10. The cloud computing system of claim 9, wherein the
physical resource pool is controlled by the first party and
resources from the physical resource pool are temporarily
provided to the second party.

11. The cloud computing system of claim 8, wherein the
default compute allocation policy is provided by a first party
and the non-default compute allocation policy is provided by
a second party.

12. The cloud computing system of claim 11, wherein the
physical resource pool is controlled by the first party and
resources from the physical resource pool are temporarily
provided to the second party.

13. The cloud computing system of claim 8, wherein the
default routing policy is provided by a first party and the
non-default routing policy is provided by a second party.

14. The cloud computing system of claim 8, wherein the
system further comprises an authentication and authorization
service.

15. The cloud computing system of claim 14, wherein the
authentication and authorization service includes a plug-in
facility; and wherein requests received via the storage plug-in
API and compute plug-in API are authenticated via the plug-
in facility.

16. The cloud computing system of claim 8, wherein the
storage allocator is operative to associate one or more objects
stored via the storage API with one of the plurality of infor-
mation processing devices from the physical resource pool;
and wherein the storage plug-in facility is operable to modify
the compute allocation policy in response to a request to use
a non-default allocation policy; and wherein the subsequent
association of virtual resources with physical resources mini-
mizes the latency between the virtual resources instantiated
by the compute allocator and the objects stored via the storage
service.
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17. A cloud computing system, the system comprising:

a compute service, a network service, a physical network,
and a physical resource pool,

the compute service including a compute request API and
a compute allocator, the compute allocator including a
processor, a computer-readable storage medium, and a
network interface, and a compute plug-in facility;

the network service including a default network policy, the
default network policy including a default packet rout-
ing policy and a default packet filtering policy, and a
network plug-in facility, the network plug-in facility
including a network plug-in API;

the physical resource pool including a plurality of infor-
mation processing devices, each information processing
device including a processor, a computer-readable
medium, and network interface;

the physical network including a plurality of communica-
tions media, each communications medium including a
physical transport layer and a link transport layer,
wherein the communications media are coupled via a
plurality of communications routers;

and wherein the compute service, and physical resource
pool are coupled via the physical network and logically
coupled via the network service;

and wherein the network plug-in facility is operable to
modify one of the default packet routing policy and the
default packet filtering policy in response to a request
received via the network plug-in API to use a non-de-
fault network policy; and wherein the subsequent rout-
ing and/or filtering of packets is directed by the non-
default packet network policy.

18. The system of claim 17 wherein the compute allocator
is operative to instantiate one or more virtual resources based
on one or more requests received via the compute request
API, and wherein each virtual resource, when instantiated, is
associated with one of the plurality of physical resources
according to acompute allocation policy; and wherein there is
a default compute allocation policy; and

wherein the compute plug-in facility further comprises a
compute plug-in API, and wherein the compute plug-in
facility is operable to modify the compute allocation
policy in response to a request to use a non-default
compute allocation policy via the compute plug-in API;
and wherein the subsequent association of virtual
resources with physical resources by the compute allo-
cator is directed by the non-default allocation policy.
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